Skip to main content

Optic Disc, Cup and Fovea Detection from Retinal Images Using U-Net++ with EfficientNet Encoder

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12069))

Included in the following conference series:


The accurate detection of retinal structures like an optic disc (OD), cup, and fovea is crucial for the analysis of Age-related Macular Degeneration (AMD), Glaucoma, and other retinal conditions. Most segmentation methods rely on separate detection of these retinal structures due to which a combined analysis for computer-aided ophthalmic diagnosis and screening is challenging. To address this issue, the paper introduces an approach incorporating OD, cup, and fovea analysis together. The paper presents a novel method for the detection of OD with a cup and fovea using modified U-Net++ architecture with the EfficientNet-B4 model as a backbone. The extracted features from the EfficientNet are utilized using skip connections in U-Net++ for precise segmentation. Datasets from ADAM and REFUGE challenges are used for evaluating the performance. The proposed method achieved a success rate of 94.74% and 95.73% dice value for OD segmentation on ADAM and REFUGE data, respectively. For fovea detection, the average Euclidean distance of 26.17 pixels is achieved for the ADAM dataset. The proposed method stood first for OD detection and segmentation tasks in ISBI ADAM 2020 challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. Alais, R., Dokládal, P., Erginay, A., Figliuzzi, B., Decencière, E.: Fast macula detection and application to retinal image quality assessment. Biomed. Signal Process. Control 55, 101567 (2020)

    Article  Google Scholar 

  2. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2487–2496 (2016)

    Google Scholar 

  3. Cheng, J., Yin, F., Wong, D.W.K., Tao, D., Liu, J.: Sparse dissimilarity-constrained coding for glaucoma screening. IEEE Trans. Biomed. Eng. 62(5), 1395–1403 (2015)

    Article  Google Scholar 

  4. Fu, H., et al.: Disc-aware ensemble network for glaucoma screening from fundus image. IEEE Trans. Med. Imaging 37(11), 2493–2501 (2018)

    Article  Google Scholar 

  5. Jiang, S., Chen, Z., Li, A., Wang, Y.: Robust optic disc localization by large scale learning. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) OMIA 2019. LNCS, vol. 11855, pp. 95–103. Springer, Cham (2019).

    Chapter  Google Scholar 

  6. Jiang, Y., et al.: JointRCNN: a region-based convolutional neural network for optic disc and cup segmentation. IEEE Trans. Biomed. Eng. 67(2), 335–343 (2020)

    Article  Google Scholar 

  7. Li, L., et al.: A large-scale database and a CNN model for attention-based glaucoma detection. IEEE Trans. Med. Imaging 39(2), 413–424 (2020)

    Article  Google Scholar 

  8. Mendonça, A.M., Melo, T., Araújo, T., Campilho, A.: Optic disc and fovea detection in color eye fundus images. In: Campilho, A., Karray, F., Wang, Z. (eds.) ICIAR 2020. LNCS, vol. 12132, pp. 332–343. Springer, Cham (2020).

    Chapter  Google Scholar 

  9. Orlando, J.I., et al.: Refuge challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)

    Article  Google Scholar 

  10. Porwal, P., et al.: Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research. Data 3(3), 25 (2018)

    Article  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).

    Chapter  Google Scholar 

  12. Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 421–429. Springer, Cham (2018).

    Chapter  Google Scholar 

  13. Roychowdhury, S., Koozekanani, D.D., Kuchinka, S.N., Parhi, K.K.: Optic disc boundary and vessel origin segmentation of fundus images. IEEE J. Biomed. Health Inf. 20(6), 1562–1574 (2016)

    Article  Google Scholar 

  14. Sedai, S., Tennakoon, R., Roy, P., Cao, K., Garnavi, R.: Multi-stage segmentation of the fovea in retinal fundus images using fully convolutional neural networks. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 1083–1086 (2017)

    Google Scholar 

  15. Sivaswamy, J., Krishnadas, S., Joshi, G.D., Jain, M., Tabish, A.U.S.: Drishti-GS: retinal image dataset for optic nerve head (onh) segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 53–56. IEEE (2014)

    Google Scholar 

  16. Soares, I., Castelo-Branco, M., Pinheiro, A.M.G.: Optic disc localization in retinal images based on cumulative sum fields. IEEE J. Biomed. Health Inf. 20(2), 574–585 (2016)

    Article  Google Scholar 

  17. Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

  18. Ting, D.S.W., et al.: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. Jama 318(22), 2211–2223 (2017)

    Google Scholar 

  19. Wang, S., Yu, L., Yang, X., Fu, C.W., Heng, P.A.: Patch-based output space adversarial learning for joint optic disc and cup segmentation. IEEE Trans. Med. Imaging 38(11), 2485–2495 (2019)

    Article  Google Scholar 

  20. Wong, W.L., et al.: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Global Health 2(2), e106–e116 (2014)

    Article  Google Scholar 

  21. Wu, J., et al.: Fovea localization in fundus photographs by faster R-CNN with physiological prior. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) OMIA 2019. LNCS, vol. 11855, pp. 156–164. Springer, Cham (2019).

    Chapter  Google Scholar 

  22. Fu, H., et al.: Adam: automatic detection challenge on age-related macular degeneration (2020).

  23. Zhang, Z., Fu, H., Dai, H., Shen, J., Pang, Y., Shao, L.: ET-Net: a generic Edge-aTtention guidance network for medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 442–450. Springer, Cham (2019).

    Chapter  Google Scholar 

  24. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nitin Singhal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamble, R., Samanta, P., Singhal, N. (2020). Optic Disc, Cup and Fovea Detection from Retinal Images Using U-Net++ with EfficientNet Encoder. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science(), vol 12069. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63418-6

  • Online ISBN: 978-3-030-63419-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics