Skip to main content

Accurate Abstractions for Controller Synthesis with Non-uniform Disturbances

  • 297 Accesses

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 12531)


Abstraction-Based Controller Synthesis (ABCS) is an emerging field for automatic synthesis of correct-by-design controllers for non-linear dynamical systems in the presence of bounded disturbances. Existing ABCS techniques assume a global (state-independent) and uniform upper bound on disturbances. This can be overly pessimistic, resulting in a failure to find a controller. In this paper, we extend ABCS to accurately compute abstractions for system models with state and input-dependent non-uniform disturbances. This requires a subtle assume-guarantee style computation of the state evolution and the estimation of the error. We empirically show the benefit of our approach with significantly smaller amount of non-determinism in the abstract transitions.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-63406-3_18
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-63406-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.


  1. 1.

    We restrict our notation to piecewise constant control inputs as more general control inputs will be unnecessary for the later part.


  1. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer, Heidelberg (1998).

    CrossRef  Google Scholar 

  2. Bai, Y., Mallik, K.: Accurate abstractions for controller synthesis with non-uniform disturbances (2019).

  3. Bai, Y., Mallik, K., Schmuck, A., Zufferey, D., Majumdar, R.: Incremental abstraction computation for symbolic controller synthesis in a changing environment. In: 2019 IEEE 58th CDC, pp. 6261–6268 (2019)

    Google Scholar 

  4. Belta, C., Yordanov, B., Gol, E.A.: Formal Methods for Discrete-Time Dynamical Systems. Springer, Cham (2017)

    CrossRef  Google Scholar 

  5. Berkenkamp, F., Moriconi, R., Schoellig, A.P., Krause, A.: Safe learning of regions of attraction for uncertain, nonlinear systems with gaussian processes. In: CDC 2016, pp. 4661–4666. IEEE (2016)

    Google Scholar 

  6. Berkenkamp, F., Turchetta, M., Schoellig, A., Krause, A.: Safe model-based reinforcement learning with stability guarantees. In: Advances in Neural Information Processing Systems, pp. 908–918 (2017)

    Google Scholar 

  7. Fisac, J.F., Akametalu, A.K., Zeilinger, M.N., Kaynama, S., Gillula, J., Tomlin, C.J.: A general safety framework for learning-based control in uncertain robotic systems. arXiv preprint arXiv:1705.01292 (2017)

  8. Girard, A.: Controller synthesis for safety and reachability via approximate bisimulation. Automatica 48(5), 947–953 (2012)

    MathSciNet  CrossRef  Google Scholar 

  9. Hsu, K., Majumdar, R., Mallik, K., Schmuck, A.: Multi-layered abstraction-based controller synthesis for continuous-time systems. In: HSCC 2018, pp. 120–129. ACM (2018)

    Google Scholar 

  10. Liu, J., Ozay, N.: Finite abstractions with robustness margins for temporal logic-based control synthesis. Nonlinear Anal.: Hybrid Syst. 22, 1–15 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995).

    CrossRef  Google Scholar 

  12. Mazo Jr., M., Davitian, A., Tabuada, P.: PESSOA: a tool for embedded controller synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 566–569. Springer, Heidelberg (2010).

    CrossRef  Google Scholar 

  13. Moldovan, T.M., Abbeel, P.: Safe exploration in Markov decision processes. arXiv preprint arXiv:1205.4810 (2012)

  14. Nilsson, P., Ozay, N., Liu, J.: Augmented finite transition systems as abstractions for control synthesis. Discrete Event Dyn. Syst. 27(2), 301–340 (2017).

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp. 179–190. ACM (1989)

    Google Scholar 

  16. Reissig, G., Weber, A., Rungger, M.: Feedback refinement relations for the synthesis of symbolic controllers. TAC 62(4), 1781–1796 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Rungger, M., Zamani, M.: SCOTS: a tool for the synthesis of symbolic controllers. In: HSCC, pp. 99–104. ACM (2016)

    Google Scholar 

  18. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolicapproach. Springer, Cham (2009).

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yunjun Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bai, Y., Mallik, K. (2020). Accurate Abstractions for Controller Synthesis with Non-uniform Disturbances. In: Lin, SW., Hou, Z., Mahony, B. (eds) Formal Methods and Software Engineering. ICFEM 2020. Lecture Notes in Computer Science(), vol 12531. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63405-6

  • Online ISBN: 978-3-030-63406-3

  • eBook Packages: Computer ScienceComputer Science (R0)