Skip to main content

Chikungunya, Dengue, Zika, and Other Emerging Mosquito-Borne Viruses

  • Chapter
  • First Online:
Neglected Tropical Diseases - North America

Part of the book series: Neglected Tropical Diseases ((NTD))

Abstract

The past two decades have seen an explosive increase in emerging and reemerging infections, ranging from SARS and Ebola viruses, to epidemics of arthropod-borne viruses (arboviruses), including chikungunya and Zika viruses. Dengue and St. Louis encephalitis viruses have emerged from areas of the United States where they had been absent for over a decade. This alarming increase in number and frequency of outbreaks of vector-borne diseases, in particular, stems from the convergence of several factors. Abrupt changes in land use have brought humans closer to transmission cycles between vectors and non-human vertebrate hosts that previously had been strictly sylvatic. Rapid and unplanned urbanization due to spread of poverty has created opportunities for insect vectors, like Aedes albopictus, to establish urban endemicity by adapting breeding habits to thrive in man-made containers. Global warming has expanded the habitable range of vectors like Aedes aegypti. This chapter focuses on viruses transmitted by mosquitoes to highlight the importance of these emerging diseases. Only by learning from the past can we anticipate and prepare for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Daniel TM (2000) The origins and precolonial epidemiology of tuberculosis in the Americas: can we figure them out? [Unresolved issues]. Int J Tuberc Lung Dis 4:395–400

    CAS  PubMed  Google Scholar 

  2. Darling MI, Donoghue HD (2014) Insights from paleomicrobiology into the indigenous peoples of pre-colonial America - a review. Mem Inst Oswaldo Cruz 109:131–139. https://doi.org/10.1590/0074-0276140589

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cook SF (1973) The significance of disease in the extinction of the New England Indians. Hum Biol 45:485–508

    CAS  PubMed  Google Scholar 

  4. Moreno-Madriñán MJ, Turell M (2018) History of Mosquitoborne diseases in the United States and implications for new pathogens. Emerg Infect Dis J CDC 24(5). https://doi.org/10.3201/eid2405.171609

  5. García-Sastre A, Endy TP (2009) Arboviruses. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Academic Press, Oxford, pp 313–321

    Chapter  Google Scholar 

  6. Weaver SC, Reisen WK (2010) Present and future arboviral threats. Antivir Res 85:328–345. https://doi.org/10.1016/j.antiviral.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  7. Heath CJ, Grossi-Soyster EN, Ndenga BA et al (2020) Evidence of transovarial transmission of Chikungunya and Dengue viruses in field-caught mosquitoes in Kenya. PLoS Negl Trop Dis 14:e0008362. https://doi.org/10.1371/journal.pntd.0008362

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guth S, Hanley KA, Althouse BM, Boots M (2020) Ecological processes underlying the emergence of novel enzootic cycles: Arboviruses in the neotropics as a case study. PLoS Negl Trop Dis 14:e0008338. https://doi.org/10.1371/journal.pntd.0008338

  9. Valentine MJ, Murdock CC, Kelly PJ (2019) Sylvatic cycles of arboviruses in non-human primates. Parasit Vectors 12:463. https://doi.org/10.1186/s13071-019-3732-0

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rose NH, Sylla M, Badolo A et al (2020) Climate and urbanization drive mosquito preference for humans. Curr Biol. https://doi.org/10.1016/j.cub.2020.06.092

  11. Kraemer MUG, Reiner RC, Brady OJ, et al (2019) Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol 4:854–863. https://doi.org/10.1038/s41564-019-0376-y

  12. Bartlow AW, Manore C, Xu C et al (2019) Forecasting zoonotic infectious disease response to climate change: mosquito vectors and a changing environment. Vet Sci 6. https://doi.org/10.3390/vetsci6020040

  13. Giordano BV, Gasparotto A, Liang P et al (2020) Discovery of an Aedes (Stegomyia) albopictus population and first records of Aedes (Stegomyia) aegypti in Canada. Med Vet Entomol 34:10–16. https://doi.org/10.1111/mve.12408

    Article  CAS  PubMed  Google Scholar 

  14. McGregor BL, Connelly CR (2020) A review of the control of Aedes aegypti (Diptera: Culicidae) in the continental United States. J Med Entomol. https://doi.org/10.1093/jme/tjaa157

  15. Robinson MC (1955) An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53. I. Clinical features. Trans R Soc Trop Med Hyg 49:28–32. https://doi.org/10.1016/0035-9203(55)90080-8

    Article  CAS  PubMed  Google Scholar 

  16. Ross RW (1956) The Newala epidemic. J Hyg 54:177–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mason PJ, Haddow AJ (1957) An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–1953: an additional note on Chikungunya virus isolations and serum antibodies. Trans R Soc Trop Med Hyg 51:238–240. https://doi.org/10.1016/0035-9203(57)90022-6

    Article  CAS  PubMed  Google Scholar 

  18. Thiboutot MM, Kannan S, Kawalekar OU et al (2010) Chikungunya: a potentially emerging epidemic? PLoS Negl Trop Dis 4:e623. https://doi.org/10.1371/journal.pntd.0000623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weaver SC (2014) Arrival of chikungunya virus in the New World: prospects for spread and impact on public health. PLoS Negl Trop Dis 8:e2921. https://doi.org/10.1371/journal.pntd.0002921

  20. Bordi L, Carletti F, Castilletti C et al (2008) Presence of the A226V mutation in autochthonous and imported Italian chikungunya virus strains. Clin Infect Dis 47:428–429. https://doi.org/10.1086/589925

    Article  PubMed  Google Scholar 

  21. Seyler T, Rizzo C, Finarelli AC et al (2008) Autochthonous chikungunya virus transmission may have occurred in Bologna, Italy, during the summer 2007 outbreak. Euro Surveill 13. https://doi.org/10.2807/ese.13.03.08015-en

  22. Gould EA, Gallian P, De Lamballerie X, Charrel RN (2010) First cases of autochthonous dengue fever and chikungunya fever in France: from bad dream to reality! Clin Microbiol Infect 16:1702–1704. https://doi.org/10.1111/j.1469-0691.2010.03386.x

    Article  CAS  PubMed  Google Scholar 

  23. Fischer M, Staples JE, Arboviral Diseases Branch, National Center for Emerging and Zoonotic Infectious Diseases, CDC (2014) Notes from the field: chikungunya virus spreads in the Americas - Caribbean and South America, 2013-2014. MMWR Morb Mortal Wkly Rep 63:500–501

    PubMed  PubMed Central  Google Scholar 

  24. Kendrick K, Stanek D, Blackmore C, Centers for Disease Control and Prevention (CDC) (2014) Notes from the field: transmission of chikungunya virus in the continental United States--Florida, 2014. MMWR Morb Mortal Wkly Rep 63:1137

    PubMed  PubMed Central  Google Scholar 

  25. Stedman GW (1828) Some account of an anomalous disease which raged in the Islands of St Thomas and Santa Cruz, in the West Indies, during the Months of September, October, November, December, and January 1827-8. Edinb Med Surg J 30:227–248

    PubMed  PubMed Central  Google Scholar 

  26. Halstead SB (2015a) Reappearance of chikungunya, formerly called dengue, in the Americas. Emerg Infect Dis 21:557–561. https://doi.org/10.3201/eid2104.141723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Drebot MA, Holloway K, Zheng H, Ogden NH (2015) Travel-related chikungunya cases in Canada, 2014. Can Commun Dis Rep 41:2–5. https://doi.org/10.14745/ccdr.v41i01a01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lwande OW, Obanda V, Bucht G et al (2015) Global emergence of Alphaviruses that cause arthritis in humans. Infect Ecol Epidemiol 5. https://doi.org/10.3402/iee.v5.29853

  29. Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yap ML, Klose T, Urakami A et al (2017) Structural studies of Chikungunya virus maturation. Proc Natl Acad Sci U S A 114:13703–13707. https://doi.org/10.1073/pnas.1713166114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Langsjoen RM, Haller SL, Roy CJ et al (2018) Chikungunya virus strains show lineage-specific variations in virulence and cross-protective ability in murine and nonhuman primate models. MBio:9. https://doi.org/10.1128/mBio.02449-17

  32. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single mutation in Chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3. https://doi.org/10.1371/journal.ppat.0030201

  33. Fontenille D, Powell JR (2020) From anonymous to public enemy: how does a mosquito become a feared arbovirus vector? Pathogens 9. https://doi.org/10.3390/pathogens9040265

  34. de Brito CAA, Marques CDL, Falcão MB et al (2020) Update on the treatment of musculoskeletal manifestations in chikungunya fever: a guideline. Rev Soc Bras Med Trop:53. https://doi.org/10.1590/0037-8682-0517-2019

  35. Riswari SF, Ma’roef CN, Djauhari H et al (2016) Study of viremic profile in febrile specimens of chikungunya in Bandung, Indonesia. J Clin Virol 74:61–65. https://doi.org/10.1016/j.jcv.2015.11.017

    Article  CAS  PubMed  Google Scholar 

  36. Ritz N, Hufnagel M, Gérardin P (2015) Chikungunya in children. Pediatr Infect Dis J 34:789–791. https://doi.org/10.1097/INF.0000000000000716

    Article  PubMed  Google Scholar 

  37. Ward CE, Chapman JI (2018) Chikungunya in children: a clinical review. Pediatr Emerg Care 34:510–515. https://doi.org/10.1097/PEC.0000000000001529

    Article  PubMed  Google Scholar 

  38. Godaert L, Najioullah F, Bartholet S et al (2017) Atypical clinical presentations of acute phase chikungunya virus infection in older adults. J Am Geriatr Soc 65:2510–2515. https://doi.org/10.1111/jgs.15004

    Article  PubMed  Google Scholar 

  39. da Silva Junior GB, Pinto JR, Mota RMS et al (2019) Risk factors for death among patients with Chikungunya virus infection during the outbreak in northeast Brazil, 2016-2017. Trans R Soc Trop Med Hyg 113:221–226. https://doi.org/10.1093/trstmh/try127

    Article  PubMed  Google Scholar 

  40. Barr KL, Vaidhyanathan V (2019) Chikungunya in infants and children: is pathogenesis increasing? Viruses 11. https://doi.org/10.3390/v11030294

  41. Kumar S, Agrawal G, Wazir S et al (2019) Experience of perinatal and neonatal Chikungunya Virus (CHIKV) infection in a tertiary care neonatal centre during outbreak in North India in 2016: a case series. J Trop Pediatr 65:169–175. https://doi.org/10.1093/tropej/fmy032

    Article  PubMed  Google Scholar 

  42. Lewthwaite P, Vasanthapuram R, Osborne JC et al (2009) Chikungunya virus and central nervous system infections in children, India. Emerg Infect Dis 15:329–331. https://doi.org/10.3201/eid1502.080902

    Article  PubMed  PubMed Central  Google Scholar 

  43. Saha S, Ramesh A, Kalantar K et al (2019) Unbiased metagenomic sequencing for pediatric meningitis in Bangladesh reveals neuroinvasive Chikungunya virus outbreak and other unrealized pathogens. MBio:10. https://doi.org/10.1128/mBio.02877-19

  44. de Lima STS, de Souza WM, Cavalcante JW et al (2020) Fatal outcome of chikungunya virus infection in Brazil. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa1038

  45. Contopoulos-Ioannidis D, Newman-Lindsay S, Chow C, LaBeaud AD (2018) Mother-to-child transmission of Chikungunya virus: a systematic review and meta-analysis. PLoS Negl Trop Dis 12:e0006510. https://doi.org/10.1371/journal.pntd.0006510

    Article  PubMed  PubMed Central  Google Scholar 

  46. Alvarez MF, Bolívar-Mejía A, Rodriguez-Morales AJ, Ramirez-Vallejo E (2017) Cardiovascular involvement and manifestations of systemic Chikungunya virus infection: a systematic review. F1000Res 6:390. https://doi.org/10.12688/f1000research.11078.2

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gavotto A, Muanza B, Delion F et al (2019) Chikungunya disease among infants in French West Indies during the 2014 outbreak. Arch Pediatr 26:259–262. https://doi.org/10.1016/j.arcped.2019.05.014

    Article  CAS  PubMed  Google Scholar 

  48. Reilly JM, Xing W, Levicky V et al (2020) Postmortem chikungunya diagnosis: a case report and literature review. Am J Forensic Med Pathol 41:48–51. https://doi.org/10.1097/PAF.0000000000000519

    Article  PubMed  Google Scholar 

  49. Labeaud AD, Bashir F, King CH (2011) Measuring the burden of arboviral diseases: the spectrum of morbidity and mortality from four prevalent infections. Popul Health Metrics 9:1. https://doi.org/10.1186/1478-7954-9-1

    Article  Google Scholar 

  50. Feldstein LR, Ellis EM, Rowhani-Rahbar A et al (2019) Estimating the cost of illness and burden of disease associated with the 2014–2015 chikungunya outbreak in the U.S. Virgin Islands. PLoS Negl Trop Dis 13. https://doi.org/10.1371/journal.pntd.0007563

  51. Hameed S, Khan S (2019) Rare variant of Guillain-Barré syndrome after chikungunya viral fever. BMJ Case Rep 12. https://doi.org/10.1136/bcr-2018-228845

  52. de Matos AMB, Maia Carvalho FM, Malta DL et al (2020) High proportion of Guillain-Barré syndrome associated with chikungunya in Northeast Brazil. Neurol Neuroimmunol Neuroinflamm 7:e833. https://doi.org/10.1212/NXI.0000000000000833

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stegmann-Planchard S, Gallian P, Tressières B et al (2020) Chikungunya, a risk factor for Guillain-Barré syndrome. Clin Infect Dis 70:1233–1235. https://doi.org/10.1093/cid/ciz625

    Article  PubMed  Google Scholar 

  54. WHO (2015) Chikungunya: case definitions for acute, atypical and chronic cases. Conclusions of an expert consultation, Managua, Nicaragua, 20–21 May 2015. Wkly Epidemiol Rec 90:409–420

    Google Scholar 

  55. Sourisseau M, Schilte C, Casartelli N et al (2007) Characterization of reemerging chikungunya virus. PLoS Pathog 3. https://doi.org/10.1371/journal.ppat.0030089

  56. Couderc T, Lecuit M (2009) Focus on Chikungunya pathophysiology in human and animal models. Microbes Infect 11:1197–1205. https://doi.org/10.1016/j.micinf.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  57. Zhang R, Kim AS, Fox JM et al (2018) Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 557:570–574. https://doi.org/10.1038/s41586-018-0121-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Amaral JK, Bilsborrow JB, Schoen RT (2020) Chronic Chikungunya arthritis and Rheumatoid Arthritis: what they have in common. Am J Med 133:e91–e97. https://doi.org/10.1016/j.amjmed.2019.10.005

    Article  CAS  PubMed  Google Scholar 

  59. Bouquillard É, Combe B (2009) A report of 21 cases of rheumatoid arthritis following Chikungunya fever. A mean follow-up of two years. Joint Bone Spine 76:654–657. https://doi.org/10.1016/j.jbspin.2009.08.005

    Article  PubMed  Google Scholar 

  60. Chang AY, Martins KAO, Encinales L et al (2018) Chikungunya Arthritis mechanisms in the Americas. Arthritis Rheumatol 70:585–593. https://doi.org/10.1002/art.40383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Edwards T, del Carmen Castillo Signor L, Williams C et al (2017) Analytical and clinical performance of a Chikungunya qRT-PCR for Central and South America. Diagn Microbiol Infect Dis 89:35–39. https://doi.org/10.1016/j.diagmicrobio.2017.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Prince HE, Seaton BL, Matud JL, Batterman HJ (2015) Chikungunya virus RNA and antibody testing at a National Reference Laboratory since the emergence of Chikungunya virus in the Americas. Clin Vaccine Immunol 22:291–297. https://doi.org/10.1128/CVI.00720-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Amaral JK, Taylor PC, Teixeira MM et al (2019) The clinical features, pathogenesis and methotrexate therapy of chronic chikungunya Arthritis. Viruses 11. https://doi.org/10.3390/v11030289

  64. Chopra A, Saluja M, Venugopalan A (2014) Effectiveness of chloroquine and inflammatory cytokine response in patients with early persistent musculoskeletal pain and arthritis following chikungunya virus infection. Arthrit Rheumatol 66:319–326. https://doi.org/10.1002/art.38221

    Article  CAS  Google Scholar 

  65. Roques P, Thiberville S-D, Dupuis-Maguiraga L et al (2018) Paradoxical effect of chloroquine treatment in enhancing Chikungunya virus infection. Viruses 10. https://doi.org/10.3390/v10050268

  66. Powell LA, Miller A, Fox JM et al (2020) Human mAbs broadly protect against arthritogenic alphaviruses by recognizing conserved elements of the Mxra8 receptor-binding site. Cell Host Microbe. https://doi.org/10.1016/j.chom.2020.07.008

  67. Gérardin P, Sampériz S, Ramful D et al (2014) Neurocognitive outcome of children exposed to perinatal mother-to-child Chikungunya virus infection: the CHIMERE cohort study on Reunion Island. PLoS Negl Trop Dis 8:e2996. https://doi.org/10.1371/journal.pntd.0002996

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shukla A, Bandyopadhyay T, Vallamkonda N, Maria A (2020) Long-term neurodevelopmental outcomes of neonatal chikungunya: follow-up of a series of cases till 1 year. J Trop Pediatr. https://doi.org/10.1093/tropej/fmaa053

  69. Gao S, Song S, Zhang L (2019) Recent progress in vaccine development against Chikungunya virus. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.02881

  70. Reyes-Sandoval A (2019) 51 years in of Chikungunya clinical vaccine development: a historical perspective. Hum Vaccin Immunother 15:2351–2358. https://doi.org/10.1080/21645515.2019.1574149

    Article  PubMed  PubMed Central  Google Scholar 

  71. Powers AM (2018) Vaccine and therapeutic options to control chikungunya virus. Clin Microbiol Rev 31. https://doi.org/10.1128/CMR.00104-16

  72. Chatchen S, Sabchareon A, Sirivichayakul C (2017) Serodiagnosis of asymptomatic dengue infection. Asian Pac J Trop Med 10:11–14. https://doi.org/10.1016/j.apjtm.2016.12.002

    Article  PubMed  Google Scholar 

  73. WHO (2009) Dengue: guidelines for diagnosis, treatment, prevention and control. WHO, Geneva

    Google Scholar 

  74. Powell JR, Tabachnick WJ (2013) History of domestication and spread of Aedes aegypti - a review. Mem Inst Oswaldo Cruz 108:11–17. https://doi.org/10.1590/0074-0276130395

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rigau-Pérez JG (1998) The early use of break-bone fever (Quebranta huesos, 1771) and dengue (1801) in Spanish. Am J Tropical Med Hyg 59:272–274. https://doi.org/10.4269/ajtmh.1998.59.272

    Article  Google Scholar 

  76. Arnold RD (1852) On the dengue or break-bone fever, as it appeared at Savannah in the Summer and Autumn of 1850. Edinb Med Surg J 78:304–319

    PubMed  PubMed Central  Google Scholar 

  77. Smart (1867) On scarlatina rheumatica, break-bone fever, or dengué. Trans Epidemiol Soc Lond 2:317–335

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Smart WR (1877) On dengue or dandy fever. Br Med J 1:382–383. https://doi.org/10.1136/bmj.1.848.382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Duval CW, Harris WH (1924) Studies upon the etiology of dengue fever: II. Cultivation and nature of the virus. J Exp Med 40:835–844. https://doi.org/10.1084/jem.40.6.835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mackerras IM (1946) Transmission of dengue fever by Aedes (Stegomyia) scutellaris walk in New Guinea. Trans R Soc Trop Med Hyg 40:295–312. https://doi.org/10.1016/0035-9203(46)90070-3

    Article  CAS  PubMed  Google Scholar 

  81. Gubler DJ (2004) Commentary: Ashburn PM, Craig CF. Experimental investigations regarding the etiology of dengue. J Infect Dis 1907 4:440–475. J Infect Dis 189:1744–1783. doi: 10.1086/383418

    Google Scholar 

  82. Bhatt S, Gething PW, Brady OJ et al (2013) The global distribution and burden of dengue. Nature 496:504–507. https://doi.org/10.1038/nature12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rivera A, Adams LE, Sharp TM et al (2020) Travel-associated and locally acquired dengue cases — United States, 2010–2017. MMWR Morb Mortal Wkly Rep 69:149–154. https://doi.org/10.15585/mmwr.mm6906a1

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13–22. https://doi.org/10.1038/nrmicro1067

    Article  CAS  PubMed  Google Scholar 

  85. Pierson TC, Diamond MS (2008) Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expert Rev Mol Med 10:e12. https://doi.org/10.1017/S1462399408000665

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pierson TC, Diamond MS (2012) Degrees of maturity: the complex structure and biology of flaviviruses. Curr Opin Virol 2:168–175. https://doi.org/10.1016/j.coviro.2012.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Holmes EC, Twiddy SS (2003) The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol 3:19–28. https://doi.org/10.1016/S1567-1348(03)00004-2

    Article  PubMed  Google Scholar 

  88. Mustafa MS, Rasotgi V, Jain S, Gupta V (2015) Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control. Med J Armed Forces India 71:67–70. https://doi.org/10.1016/j.mjafi.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  89. Guzman MG, Harris E (2015) Dengue. Lancet 385:453–465. https://doi.org/10.1016/S0140-6736(14)60572-9

    Article  PubMed  Google Scholar 

  90. Vasilakis N, Cardosa J, Hanley KA et al (2011) Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat Rev Microbiol 9:532–541. https://doi.org/10.1038/nrmicro2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Janjindamai W, Pruekprasert P (2003) Perinatal dengue infection: a case report and review of literature. Southeast Asian J Trop Med Public Health 34:793–796

    PubMed  Google Scholar 

  92. Pouliot SH, Xiong X, Harville E et al (2010) Maternal dengue and pregnancy outcomes: a systematic review. Obstet Gynecol Surv 65:107–118. https://doi.org/10.1097/OGX.0b013e3181cb8fbc

    Article  PubMed  Google Scholar 

  93. Sirinavin S, Nuntnarumit P, Supapannachart S et al (2004) Vertical dengue infection: case reports and review. Pediatr Infect Dis J 23:1042–1047. https://doi.org/10.1097/01.inf.0000143644.95692.0e

    Article  PubMed  Google Scholar 

  94. Waduge R, Malavige GN, Pradeepan M et al (2006) Dengue infections during pregnancy: a case series from Sri Lanka and review of the literature. J Clin Virol 37:27–33. https://doi.org/10.1016/j.jcv.2006.06.002

    Article  PubMed  Google Scholar 

  95. Paixão ES, Teixeira MG, da Costa MCN, Rodrigues LC (2016) Dengue during pregnancy and adverse fetal outcomes: a systematic review and meta-analysis. Lancet Infect Dis 16:857–865. https://doi.org/10.1016/S1473-3099(16)00088-8

    Article  PubMed  Google Scholar 

  96. Basurko C, Carles G, Youssef M, Guindi WEL (2009) Maternal and fetal consequences of dengue fever during pregnancy. Eur J Obstet Gynecol Reprod Biol 147:29–32. https://doi.org/10.1016/j.ejogrb.2009.06.028

    Article  PubMed  Google Scholar 

  97. Boussemart T, Babe P, Sibille G et al (2001) Prenatal transmission of dengue: two new cases. J Perinatol 21:255–257. https://doi.org/10.1038/sj.jp.7200530

    Article  CAS  PubMed  Google Scholar 

  98. Chye JK, Lim CT, Ng KB et al (1997) Vertical transmission of dengue. Clin Infect Dis 25:1374–1377. https://doi.org/10.1086/516126

    Article  CAS  PubMed  Google Scholar 

  99. Thaithumyanon P, Thisyakorn U, Deerojnawong J, Innis BL (1994) Dengue infection complicated by severe hemorrhage and vertical transmission in a parturient woman. Clin Infect Dis 18:248–249. https://doi.org/10.1093/clinids/18.2.248

    Article  CAS  PubMed  Google Scholar 

  100. Dalugama C, Shelton J, Ekanayake M, Gawarammana IB (2018) Dengue fever complicated with Guillain-Barré syndrome: a case report and review of the literature. J Med Case Rep 12:137. https://doi.org/10.1186/s13256-018-1626-y

    Article  PubMed  PubMed Central  Google Scholar 

  101. Halstead SB (2015b) Pathogenesis of dengue: dawn of a new era. F1000Res 4:1353. https://doi.org/10.12688/f1000research.7024.1

    Article  Google Scholar 

  102. Beatty PR, Puerta-Guardo H, Killingbeck SS et al (2015) Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med 7:304ra141–304ra141. https://doi.org/10.1126/scitranslmed.aaa3787

    Article  CAS  PubMed  Google Scholar 

  103. Chen H-C, Hofman FM, Kung JT et al (2007) Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol 81:5518–5526. https://doi.org/10.1128/JVI.02575-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jeewandara C, Gomes L, Wickramasinghe N et al (2015) Platelet activating factor contributes to vascular leak in acute dengue infection. PLoS Negl Trop Dis 9. https://doi.org/10.1371/journal.pntd.0003459

  105. Halstead SB, Cohen SN (2015) Dengue hemorrhagic fever at 60 years: early evolution of concepts of causation and treatment. Microbiol Mol Biol Rev 79:281–291. https://doi.org/10.1128/MMBR.00009-15

    Article  PubMed  PubMed Central  Google Scholar 

  106. de Oliveira Poersch C, Pavoni DP, Queiroz MH et al (2005) Dengue virus infections: comparison of methods for diagnosing the acute disease. J Clin Virol 32:272–277. https://doi.org/10.1016/j.jcv.2004.08.008

    Article  CAS  PubMed  Google Scholar 

  107. Kutsuna S, Saito S, Ohmagari N (2020) Simultaneous diagnosis of dengue virus, Chikungunya virus, and Zika virus infection using a new point-of-care testing (POCT) system based on the loop-mediated isothermal amplification (LAMP) method. J Infect Chemother. https://doi.org/10.1016/j.jiac.2020.07.001

  108. Nascimento EJM, Huleatt JW, Cordeiro MT et al (2018) Development of antibody biomarkers of long term and recent dengue virus infections. J Virol Methods 257:62–68. https://doi.org/10.1016/j.jviromet.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  109. Blacksell SD, Jarman RG, Bailey MS et al (2011) Evaluation of six commercial point-of-care tests for diagnosis of acute dengue infections: the need for combining NS1 antigen and IgM/IgG antibody detection to achieve acceptable levels of accuracy. Clin Vaccine Immunol 18:2095–2101. https://doi.org/10.1128/CVI.05285-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Luo R, Fongwen N, Kelly-Cirino C et al (2019) Rapid diagnostic tests for determining dengue serostatus: a systematic review and key informant interviews. Clin Microbiol Infect 25:659–666. https://doi.org/10.1016/j.cmi.2019.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bonaparte M, Zheng L, Garg S et al (2019) Evaluation of rapid diagnostic tests and conventional enzyme-linked immunosorbent assays to determine prior dengue infection. J Travel Med:26. https://doi.org/10.1093/jtm/taz078

  112. Alcon S, Talarmin A, Debruyne M et al (2002) Enzyme-linked immunosorbent assay specific to Dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol 40:376–381. https://doi.org/10.1128/jcm.40.02.376-381.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Duong V, Ly S, Lorn Try P et al (2011) Clinical and virological factors influencing the performance of a NS1 antigen-capture assay and potential use as a marker of dengue disease severity. PLoS Negl Trop Dis 5:e1244. https://doi.org/10.1371/journal.pntd.0001244

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tricou V, Vu HTT, Quynh NVN et al (2010) Comparison of two dengue NS1 rapid tests for sensitivity, specificity and relationship to viraemia and antibody responses. BMC Infect Dis 10:142. https://doi.org/10.1186/1471-2334-10-142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Blessmann J, Winkelmann Y, Keoviengkhone L et al (2020) Assessment of diagnostic and analytic performance of the SD Bioline Dengue Duo test for dengue virus (DENV) infections in an endemic area (Savannakhet province, Lao People’s Democratic Republic). PLoS One 15:e0230337. https://doi.org/10.1371/journal.pone.0230337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kalayanarooj S (2008) Choice of colloidal solutions in dengue hemorrhagic fever patients. J Med Assoc Thail 91(Suppl 3):S97–S103

    Google Scholar 

  117. Thomas SJ, Yoon I-K (2019) A review of Dengvaxia®: development to deployment. Hum Vaccin Immunother 15:2295–2314. https://doi.org/10.1080/21645515.2019.1658503

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wilder-Smith A (2020) Dengue vaccine development: status and future. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 63:40–44. https://doi.org/10.1007/s00103-019-03060-3

    Article  PubMed  Google Scholar 

  119. Dick GWA, Kitchen SF, Haddow AJ (1952) Zika Virus (I). Isolations and serological specificity. Trans R Soc Trop Med Hyg 46:509–520. https://doi.org/10.1016/0035-9203(52)90042-4

    Article  CAS  PubMed  Google Scholar 

  120. Bueno MG, Martinez N, Abdalla L, et al (2016) Animals in the Zika virus life cycle: what to expect from megadiverse Latin American countries. PLoS Negl Trop Dis 10:e0005073. https://doi.org/10.1371/journal.pntd.0005073

  121. MacNamara FN (1954) Zika virus : a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg 48:139–145. https://doi.org/10.1016/0035-9203(54)90006-1

    Article  CAS  PubMed  Google Scholar 

  122. Haddow AD, Nasar F, Guzman H et al (2016) Genetic characterization of Spondweni and Zika viruses and susceptibility of geographically distinct strains of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae) to Spondweni Virus. PLoS Negl Trop Dis 10:e0005083. https://doi.org/10.1371/journal.pntd.0005083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kokernot RH, Smithburn KC, Muspratt J, Hodgson B (1957) Studies on arthropod-borne viruses of Tongaland. VIII. Spondweni virus, an agent previously unknown, isolated from Taeniorhynchus (Mansonioides) uniformis. S Afr J Med Sci 22:103–112

    CAS  PubMed  Google Scholar 

  124. Simpson DIH (1964) Zika virus infection in man. Trans R Soc Trop Med Hyg 58:339–348. https://doi.org/10.1016/0035-9203(64)90201-9

    Article  Google Scholar 

  125. Haddow AD, Woodall JP (2016) Distinguishing between Zika and Spondweni viruses. Bull World Health Organ 94:711–711A. https://doi.org/10.2471/BLT.16.181503

    Article  PubMed  PubMed Central  Google Scholar 

  126. Duffy MR, Chen T-H, Hancock WT et al (2009) Zika Virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360:2536–2543. https://doi.org/10.1056/NEJMoa0805715

    Article  CAS  PubMed  Google Scholar 

  127. Moore DL, Causey OR, Carey DE et al (1975) Arthropod-borne viral infections of man in Nigeria, 1964–1970. Ann Trop Med Parasitol 69:49–64. https://doi.org/10.1080/00034983.1975.11686983

    Article  CAS  PubMed  Google Scholar 

  128. Lanciotti RS, Kosoy OL, Laven JJ et al (2008) Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis J CDC 14(8). https://doi.org/10.3201/eid1408.080287

  129. Dyer O (2015) Zika virus spreads across Americas as concerns mount over birth defects. BMJ 351:h6983. https://doi.org/10.1136/bmj.h6983

    Article  PubMed  Google Scholar 

  130. Gatherer D, Kohl A (2016) Zika virus: a previously slow pandemic spreads rapidly through the Americas. J Gen Virol 97:269–273. https://doi.org/10.1099/jgv.0.000381

    Article  CAS  PubMed  Google Scholar 

  131. de Oliveira WK, Carmo EH, Henriques CM et al (2017) Zika Virus infection and associated neurologic disorders in Brazil. N Engl J Med 376:1591–1593. https://doi.org/10.1056/NEJMc1608612

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ye Q, Liu Z-Y, Han J-F et al (2016) Genomic characterization and phylogenetic analysis of Zika virus circulating in the Americas. Infect Genet Evol 43:43–49. https://doi.org/10.1016/j.meegid.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  133. Hayes EB (2009) Zika virus outside Africa. Emerg Infect Dis 15:1347–1350. https://doi.org/10.3201/eid1509.090442

    Article  PubMed  PubMed Central  Google Scholar 

  134. Anfasa F, Siegers JY, van der Kroeg M et al (2017) Phenotypic differences between Asian and African lineage Zika viruses in human neural progenitor cells. mSphere:2. https://doi.org/10.1128/mSphere.00292-17

  135. Gong Z, Xu X, Han G-Z (2017) The diversification of Zika Virus: are there two distinct lineages? Genome Biol Evol 9:2940–2945. https://doi.org/10.1093/gbe/evx223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang L, Valderramos SG, Wu A et al (2016) From mosquitos to humans: genetic evolution of Zika virus. Cell Host Microbe 19:561–565. https://doi.org/10.1016/j.chom.2016.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Aletti M, Lecoules S, Kanczuga V et al (2017) Transient myocarditis associated with acute Zika virus infection. Clin Infect Dis 64:678–679. https://doi.org/10.1093/cid/ciw802

    Article  CAS  PubMed  Google Scholar 

  138. Boyer Chammard T, Schepers K, Breurec S et al (2017) Severe thrombocytopenia after Zika Virus Infection, Guadeloupe, 2016. Emerg Infect Dis 23:696–698. https://doi.org/10.3201/eid2304.161967

    Article  PubMed  PubMed Central  Google Scholar 

  139. Cunha BA, Apostolopoulou A, Sivarajah T, Klein NC (2016) Facial puffiness in a returning traveler from Puerto Rico: Chikungunya, Dengue Fever, or Zika Virus? Clin Infect Dis 63:1264–1265. https://doi.org/10.1093/cid/ciw536

    Article  PubMed  Google Scholar 

  140. Furtado JM, Espósito DL, Klein TM et al (2016) Uveitis associated with Zika virus infection. N Engl J Med 375:394–396. https://doi.org/10.1056/NEJMc1603618

    Article  PubMed  Google Scholar 

  141. Karimi O, Goorhuis A, Schinkel J et al (2016) Thrombocytopenia and subcutaneous bleedings in a patient with Zika virus infection. Lancet 387:939–940. https://doi.org/10.1016/S0140-6736(16)00502-X

    Article  PubMed  Google Scholar 

  142. Kodati S, Palmore TN, Spellman FA et al (2017) Bilateral posterior uveitis associated with Zika virus infection. Lancet 389:125–126. https://doi.org/10.1016/S0140-6736(16)32518-1

    Article  PubMed  Google Scholar 

  143. Sharp TM, Muñoz-Jordán J, Perez-Padilla J et al (2016) Zika virus infection associated with severe thrombocytopenia. Clin Infect Dis 63:1198–1201. https://doi.org/10.1093/cid/ciw476

    Article  PubMed  Google Scholar 

  144. Van Dyne EA, Neaterour P, Rivera A et al (2019) Incidence and outcome of severe and nonsevere thrombocytopenia associated with Zika virus infection-Puerto Rico, 2016. Open Forum Infect Dis 6:ofy325. https://doi.org/10.1093/ofid/ofy325

    Article  PubMed  Google Scholar 

  145. Vinhaes ES, Santos LA, Dias L et al (2017) Transient hearing loss in adults associated with Zika virus infection. Clin Infect Dis 64:675–677. https://doi.org/10.1093/cid/ciw770

    Article  PubMed  Google Scholar 

  146. Waggoner JJ, Rouphael N, Xu Y et al (2017) Pericarditis associated with acute Zika virus infection in a returning traveler. Open Forum Infect Dis 4:ofx103. https://doi.org/10.1093/ofid/ofx103

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zammarchi L, Stella G, Mantella A et al (2015) Zika virus infections imported to Italy: clinical, immunological and virological findings, and public health implications. J Clin Virol 63:32–35. https://doi.org/10.1016/j.jcv.2014.12.005

    Article  PubMed  Google Scholar 

  148. Focosi D, Maggi F, Pistello M (2016) Zika Virus: implications for public health. Clin Infect Dis 63:227–233. https://doi.org/10.1093/cid/ciw210

    Article  PubMed  Google Scholar 

  149. Oehler E, Watrin L, Larre P et al (2014) Zika virus infection complicated by Guillain-Barre syndrome--case report, French Polynesia, December 2013. Euro Surveill:19. https://doi.org/10.2807/1560-7917.es2014.19.9.20720

  150. Styczynski AR, Malta JMAS, Krow-Lucal ER et al (2017) Increased rates of Guillain-Barré syndrome associated with Zika virus outbreak in the Salvador metropolitan area, Brazil. PLoS Negl Trop Dis 11:e0005869. https://doi.org/10.1371/journal.pntd.0005869

    Article  PubMed  PubMed Central  Google Scholar 

  151. Araujo LM, Ferreira MLB, Nascimento OJ (2016) Guillain-Barré syndrome associated with the Zika virus outbreak in Brazil. Arq Neuropsiquiatr 74:253–255. https://doi.org/10.1590/0004-282X20160035

    Article  PubMed  Google Scholar 

  152. Dos Santos T, Rodriguez A, Almiron M et al (2016) Zika Virus and the Guillain-Barré syndrome - case series from Seven Countries. N Engl J Med 375:1598–1601. https://doi.org/10.1056/NEJMc1609015

    Article  PubMed  Google Scholar 

  153. Chibueze EC, Tirado V, da Lopes KS et al (2017) Zika virus infection in pregnancy: a systematic review of disease course and complications. Reprod Health 14:28. https://doi.org/10.1186/s12978-017-0285-6

    Article  PubMed  PubMed Central  Google Scholar 

  154. Cuevas EL (2016) Preliminary report of microcephaly potentially associated with Zika virus infection during pregnancy — Colombia, January–November 2016. MMWR Morb Mortal Wkly Rep 65. https://doi.org/10.15585/mmwr.mm6549e1

  155. Besnard M, Lastere S, Teissier A et al (2014) Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Euro Surveill 19

    Google Scholar 

  156. Moore CA, Staples JE, Dobyns WB et al (2017) Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr 171:288–295. https://doi.org/10.1001/jamapediatrics.2016.3982

    Article  PubMed  PubMed Central  Google Scholar 

  157. Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR (2016) Zika Virus and birth defects--reviewing the evidence for causality. N Engl J Med 374:1981–1987. https://doi.org/10.1056/NEJMsr1604338

    Article  CAS  PubMed  Google Scholar 

  158. Antoniou E, Orovou E, Sarella A et al (2020) Zika Virus and the risk of developing microcephaly in infants: a systematic review. Int J Environ Res Public Health 17. https://doi.org/10.3390/ijerph17113806

  159. Counotte MJ, Meili KW, Taghavi K et al (2019) Zika virus infection as a cause of congenital brain abnormalities and Guillain-Barré syndrome: a living systematic review. F1000Res 8:1433. https://doi.org/10.12688/f1000research.19918.1

    Article  PubMed  PubMed Central  Google Scholar 

  160. Gallo LG, Martinez-Cajas J, Peixoto HM et al (2020) Another piece of the Zika puzzle: assessing the associated factors to microcephaly in a systematic review and meta-analysis. BMC Public Health:20. https://doi.org/10.1186/s12889-020-08946-5

  161. Nithiyanantham SF, Badawi A (2019) Maternal infection with Zika virus and prevalence of congenital disorders in infants: systematic review and meta-analysis. Can J Public Health 110:638–648. https://doi.org/10.17269/s41997-019-00215-2

    Article  PubMed  PubMed Central  Google Scholar 

  162. Blitvich BJ, Magalhaes T, Laredo-Tiscareño SV, Foy BD (2020) Sexual transmission of arboviruses: a systematic review. Viruses 12. https://doi.org/10.3390/v12090933

  163. Russell K, Hills SL, Oster AM et al (2017) Male-to-female sexual transmission of Zika Virus-United States, January-April 2016. Clin Infect Dis 64:211–213. https://doi.org/10.1093/cid/ciw692

    Article  PubMed  Google Scholar 

  164. Visseaux B, Mortier E, Houhou-Fidouh N et al (2016) Zika virus in the female genital tract. Lancet Infect Dis 16:1220. https://doi.org/10.1016/S1473-3099(16)30387-5

    Article  PubMed  Google Scholar 

  165. Foy BD, Kobylinski KC, Chilson Foy JL et al (2011) Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis 17:880–882. https://doi.org/10.3201/eid1705.101939

    Article  PubMed  PubMed Central  Google Scholar 

  166. Turmel JM, Abgueguen P, Hubert B et al (2016) Late sexual transmission of Zika virus related to persistence in the semen. Lancet 387:2501. https://doi.org/10.1016/S0140-6736(16)30775-9

    Article  PubMed  Google Scholar 

  167. Arsuaga M, Bujalance SG, Díaz-Menéndez M et al (2016) Probable sexual transmission of Zika virus from a vasectomised man. Lancet Infect Dis 16:1107. https://doi.org/10.1016/S1473-3099(16)30320-6

    Article  PubMed  Google Scholar 

  168. Hamel R, Dejarnac O, Wichit S et al (2015) Biology of Zika virus infection in human skin cells. J Virol 89:8880–8896. https://doi.org/10.1128/JVI.00354-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Chen JC, Wang Z, Huang H et al (2016) Infection of human uterine fibroblasts by Zika virus in vitro: implications for viral transmission in women. Int J Infect Dis 51:139–140. https://doi.org/10.1016/j.ijid.2016.07.015

    Article  PubMed  Google Scholar 

  170. Aagaard KM, Lahon A, Suter MA et al (2017) Primary human placental trophoblasts are permissive for Zika Virus (ZIKV) Replication. Sci Rep 7:41389. https://doi.org/10.1038/srep41389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Quicke KM, Bowen JR, Johnson EL et al (2016) Zika Virus infects human placental macrophages. Cell Host Microbe 20:83–90. https://doi.org/10.1016/j.chom.2016.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Pagani I, Ghezzi S, Ulisse A et al (2017) Human endometrial stromal cells are highly permissive to productive infection by Zika Virus. Sci Rep 7:44286. https://doi.org/10.1038/srep44286

    Article  PubMed  PubMed Central  Google Scholar 

  173. Siemann DN, Strange DP, Maharaj PN et al (2017) Zika virus infects human sertoli cells and modulates the integrity of the in vitro blood-testis barrier model. J Virol 91. https://doi.org/10.1128/JVI.00623-17

  174. Tang H, Hammack C, Ogden SC et al (2016) Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18:587–590. https://doi.org/10.1016/j.stem.2016.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rashid M, Zahedi-Amiri A, Glover KKM et al (2020) Zika virus dysregulates human Sertoli cell proteins involved in spermatogenesis with little effect on tight junctions. PLoS Negl Trop Dis:14. https://doi.org/10.1371/journal.pntd.0008335

  176. Kumar A, Jovel J, Lopez-Orozco J et al (2018a) Human Sertoli cells support high levels of Zika virus replication and persistence. Sci Rep 8. https://doi.org/10.1038/s41598-018-23899-x

  177. Oliveira DBL, Durigon GS, Mendes ÉA et al (2018) Persistence and intra-host genetic evolution of Zika virus infection in symptomatic adults: a special view in the male reproductive system. Viruses 10. https://doi.org/10.3390/v10110615

  178. Hughes BW, Addanki KC, Sriskanda AN et al (2016) Infectivity of immature neurons to Zika virus: a link to congenital Zika syndrome. EBioMedicine 10:65–70. https://doi.org/10.1016/j.ebiom.2016.06.026

    Article  PubMed  PubMed Central  Google Scholar 

  179. Shao Q, Herrlinger S, Yang S-L et al (2016) Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development 143:4127–4136. https://doi.org/10.1242/dev.143768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Huang W-C, Abraham R, Shim B-S et al (2016) Zika virus infection during the period of maximal brain growth causes microcephaly and corticospinal neuron apoptosis in wild type mice. Sci Rep 6:34793. https://doi.org/10.1038/srep34793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Moura da Silva AA, Ganz JSS, da Sousa PS et al (2016) Early growth and neurologic outcomes of infants with probable congenital Zika virus syndrome. Emerg Infect Dis 22:1953–1956. https://doi.org/10.3201/eid2211.160956

    Article  PubMed  PubMed Central  Google Scholar 

  182. Cordeiro MT (2019) Laboratory diagnosis of Zika virus. Top Magn Reson Imaging 28:15–17. https://doi.org/10.1097/RMR.0000000000000190

    Article  PubMed  Google Scholar 

  183. Adebanjo T (2017) Update: interim guidance for the diagnosis, evaluation, and management of infants with possible congenital Zika Virus infection — United States, October 2017. MMWR Morb Mortal Wkly Rep 66. https://doi.org/10.15585/mmwr.mm6641a1

  184. Ali S, Gugliemini O, Harber S, et al (2017) Environmental and social change drive the explosive emergence of Zika virus in the Americas. PLoS Negl Trop Dis 11:e0005135. https://doi.org/10.1371/journal.pntd.0005135

  185. Tebas P, Roberts CC, Muthumani K et al (2017) Safety and immunogenicity of an Anti-Zika virus DNA vaccine - preliminary report. N Engl J Med. https://doi.org/10.1056/NEJMoa1708120

  186. Gill CM, Beckham JD, Piquet AL et al (2019) Five emerging neuroinvasive arboviral diseases: cache Valley, Eastern Equine Encephalitis, Jamestown Canyon, Powassan, and Usutu. Semin Neurol 39:419–427. https://doi.org/10.1055/s-0039-1687839

    Article  PubMed  Google Scholar 

  187. Borucki MK, Kempf BJ, Blitvich BJ et al (2002) La Crosse virus: replication in vertebrate and invertebrate hosts. Microbes Infect 4:341–350. https://doi.org/10.1016/s1286-4579(02)01547-2

    Article  PubMed  Google Scholar 

  188. Watts DM, Pantuwatana S, DeFoliart GR et al (1973) Transovarial transmission of LaCrosse virus (California encephalitis group) in the mosquito, Aedes triseriatus. Science 182:1140–1141. https://doi.org/10.1126/science.182.4117.1140

    Article  CAS  PubMed  Google Scholar 

  189. Teleron ALA, Rose BK, Williams DM et al (2016) La crosse encephalitis: an adult case series. Am J Med 129:881–884. https://doi.org/10.1016/j.amjmed.2016.03.021

    Article  PubMed  Google Scholar 

  190. Lambert AJ, Fryxell RT, Freyman K et al (2015) Comparative sequence analyses of la crosse virus strain isolated from patient with Fatal Encephalitis, Tennessee, USA. Emerg Infect Dis 21:833–836. https://doi.org/10.3201/eid2105.141992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bewick S, Agusto F, Calabrese JM et al (2016) Epidemiology of La Crosse Virus Emergence, Appalachia Region, United States. Emerg Infect Dis 22:1921–1929. https://doi.org/10.3201/eid2211.160308

    Article  PubMed  PubMed Central  Google Scholar 

  192. Byrd BD (2016) La Crosse Encephalitis: a persistent arboviral threat in North Carolina. N C Med J 77:330–333. https://doi.org/10.18043/ncm.77.5.330

    Article  PubMed  Google Scholar 

  193. Harris MC, Dotseth EJ, Jackson BT et al (2015) La Crosse Virus in Aedes japonicus japonicus mosquitoes in the Appalachian Region, United States. Emerg Infect Dis 21:646–649. https://doi.org/10.3201/eid2104.140734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Leisnham PT, Juliano SA (2012) Impacts of climate, land use, and biological invasion on the ecology of immature Aedes mosquitoes: implications for La Crosse emergence. EcoHealth 9:217–228. https://doi.org/10.1007/s10393-012-0773-7

    Article  PubMed  PubMed Central  Google Scholar 

  195. Miller A, Carchman R, Long R, Denslow SA (2012) La Crosse viral infection in hospitalized pediatric patients in Western North Carolina. Hosp Pediatr 2:235–242. https://doi.org/10.1542/hpeds.2012-0022

    Article  PubMed  Google Scholar 

  196. Kinsella CM, Paras ML, Smole S et al (2020) Jamestown Canyon virus in Massachusetts: clinical case series and vector screening. Emerg Microbes Infect 9:903–912. https://doi.org/10.1080/22221751.2020.1756697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Walker ED, Grayson MA, Edman JD (1993) Isolation of Jamestown Canyon and snowshoe hare viruses (California serogroup) from Aedes mosquitoes in western Massachusetts. J Am Mosq Control Assoc 9:131–134

    CAS  PubMed  Google Scholar 

  198. Pastula DM, Hoang Johnson DK, White JL et al (2015) Jamestown Canyon virus disease in the United States—2000–2013. Am J Trop Med Hyg 93:384–389. https://doi.org/10.4269/ajtmh.15-0196

    Article  PubMed  PubMed Central  Google Scholar 

  199. Lumsden LL (1958) St. Louis encephalitis in 1933: observations on epidemiological features. Public Health Rep 73:340–354

    Google Scholar 

  200. Spinsanti LI, Díaz LA, Glatstein N, et al (2008) Human outbreak of St. Louis encephalitis detected in Argentina, 2005. J Clin Virol 42:27–33. https://doi.org/10.1016/j.jcv.2007.11.022

  201. Venkat H, Krow-Lucal E, Hennessey M, et al (2015) Concurrent outbreaks of St. Louis encephalitis virus and West Nile virus disease - Arizona, 2015. MMWR Morb Mortal Wkly Rep 64:1349–1350. https://doi.org/10.15585/mmwr.mm6448a5

  202. Diaz A, Coffey LL, Burkett-Cadena N, Day JF (2018) Reemergence of St. Louis Encephalitis virus in the Americas. Emerg Infect Dis 24:2150–2157. https://doi.org/10.3201/eid2412.180372

    Article  PubMed Central  Google Scholar 

  203. Kumar B, Manuja A, Gulati B et al (2018b) Zoonotic viral diseases of equines and their impact on human and animal health. Open Virol J 12:80–98. https://doi.org/10.2174/1874357901812010080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Giltner LT, Shahan MS (1933) The immunological relationship of Eastern and Western strains of equine encephalomyelitis virus. Science 78:587–588. https://doi.org/10.1126/science.78.2034.587-a

    Article  CAS  PubMed  Google Scholar 

  205. Weaver SC (2005) Host range, amplification and arboviral disease emergence. Arch Virol Suppl:33–44. https://doi.org/10.1007/3-211-29981-5_4

  206. Zacks MA, Paessler S (2010) Encephalitic alphaviruses. Vet Microbiol 140:281. https://doi.org/10.1016/j.vetmic.2009.08.023

    Article  CAS  PubMed  Google Scholar 

  207. Nguyen NL, Zhao G, Hull R et al (2013) Cache Valley virus in a patient diagnosed with aseptic meningitis. J Clin Microbiol 51:1966–1969. https://doi.org/10.1128/JCM.00252-13

    Article  PubMed  PubMed Central  Google Scholar 

  208. Sexton DJ, Rollin PE, Breitschwerdt EB et al (1997) Life-threatening cache valley virus infection. N Engl J Med 336:547–550. https://doi.org/10.1056/NEJM199702203360804

    Article  CAS  PubMed  Google Scholar 

  209. Wilson MR, Suan D, Duggins A et al (2017) A novel cause of chronic viral meningoencephalitis: Cache Valley virus. Ann Neurol 82:105–114. https://doi.org/10.1002/ana.24982

    Article  PubMed  PubMed Central  Google Scholar 

  210. Yang Y, Qiu J, Snyder-Keller A et al (2018) Fatal Cache Valley virus meningoencephalitis associated with rituximab maintenance therapy. Am J Hematol 93:590–594. https://doi.org/10.1002/ajh.25024

    Article  PubMed  PubMed Central  Google Scholar 

  211. Holden P, Hess AD (1959) Cache Valley virus, a previously undescribed mosquito-borne agent. Science 130:1187–1188. https://doi.org/10.1126/science.130.3383.1187

    Article  CAS  PubMed  Google Scholar 

  212. Waddell L, Pachal N, Mascarenhas M et al (2019) Cache Valley virus: a scoping review of the global evidence. Zoonoses Public Health 66:739–758. https://doi.org/10.1111/zph.12621

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Desiree LaBeaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vu, D.M., LaBeaud, A.D. (2021). Chikungunya, Dengue, Zika, and Other Emerging Mosquito-Borne Viruses. In: Weatherhead, J.E. (eds) Neglected Tropical Diseases - North America. Neglected Tropical Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-63384-4_9

Download citation

Publish with us

Policies and ethics