Skip to main content

RNA Interference (RNAi) in Functional Genomics of Wheat

  • Chapter
  • First Online:
Genome Engineering for Crop Improvement

Part of the book series: Concepts and Strategies in Plant Sciences ((CSPS))

Abstract

Post-genomic era of biology is faced with a major challenge in deciphering the gene function out of enormous amount of data generated by NGS technology, in addition to large number of EST sequences, available in the public domain. Among many approaches, one important approach is to knock out the gene and analysis of the visible effect of loss of gene function. RNA interference (RNAi), as a reverse genetic approach currently in use for studies of gene function, holds a great promise in this context. The efficacy of RNAi as tool for functional genomics study has already been successfully demonstrated in Caenorhabditis elegans. With the availability of comprehensive resources of genomic sequence data and knowledge of the biological mechanism of RNAi, use of RNAi in functional genomics is quickly gaining space and popularity. Results from the study of transgene-induced RNAi suggests many variables that should be considered while designing experiment to decipher gene function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altenbach SB, Allen PV (2011) Transformation of the US bread wheat “Butte 86” and silencing of omega-5 gliadin genes. GM Crops 2–1:66–73

    Google Scholar 

  • Altenbach SB, Tanaka CK, Allen PV (2014a) Quantitative proteomic analysis of wheat grain proteins reveals differential effects of silencing of omega- 5 gliadin genes in transgenic lines. J Cereal Sci 59:118–125

    Google Scholar 

  • Altenbach SB, Tanaka CK, Seabourn BW (2014b) Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour. BMC Plant Biol 14:393. https://doi.org/10.1186/s12870-014-0393-1

  • Altenbach SB, Tanaka CK, Pineau F, Lupi R, Drouet M, Beaudouin E et al (2015) Assessment of the allergenic potential of transgenic wheat (Triticum aestivum) with reduced levels of ω5-gliadins, the major sensitizing allergen in wheat-dependent exercise-induced anaphylaxis. J Agric Food Chem 63:9323–9332. https://doi.org/10.1021/acs.jafc.5b03557

  • Altenbach SB, Chang HC, Simon-Buss A, Mohr T, Huo N, Gu YQ (2019a) Exploiting the reference genome sequence of hexaploid wheat: a proteomic study offlour proteins from the cultivar Chinese Spring. Func Integr Genomics https://doi.org/10.1007/s10142-019-00694-z

  • Altenbach SB, Chang HC, Yu XB, Seabourn BW, Green PH, Alaedini A (2019b) Elimination of omega-1,2 gliadins from bread wheat (Triticum aestivum) flour: effects on immunogenic potential and end-use Quality. Front Plant Sci 10:580

    Google Scholar 

  • Axtell MJ, Synder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19(6):1750–1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barro F, Iehisa JC, Giménez MJ, García-Molina MD, Ozuna CV, Comino I et al (2016) Targeting of prolamins by RNAi in bread wheat: effectiveness of seven silencing-fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins. Plant Biotechnol J 14:986–996

    Article  CAS  PubMed  Google Scholar 

  • Barro F, Iehisa JC, Giménez MJ et al (2016) Targeting of prolamins by RNAi in bread wheat: effectiveness of seven silencing-fragment combinations for obtaining lines devoid of coeliac disease epitopes from highly immunogenic gliadins. Plant Biotechnol J 14(3):986–996

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC (2004) RNA silencing in plants. Nature 431:356–363

    Google Scholar 

  • Bednarek J, Boulaflous A, Girousse C, Ravel C, Tassy C, Barret P, Bouzidi MF, Mouzeyar S (2012) Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. J Exp Bot 63(16):5945–5955

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366

    Article  CAS  PubMed  Google Scholar 

  • Blechl A, Beecher B, Vensel W, Tanaka C, Altenbach S (2016) RNA interference targeting rye secalins alters flour protein composition in a wheat variety carrying 1BL1RS translocation. J Cereal Sci 68:172–180

    Google Scholar 

  • Borisjuk N, Kishchenko O, Eliby S, Schramm C, Anderson P, Jatayev S, Kurishbayev A, Shavrukov Y (2019) Genetic modification for wheat improvement: from transgenesis to genome editing. Biomed Res Int 2019:6216304. https://doi.org/10.1155/2019/6216304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Aufsatz W, Zilberman D, Mette MF, Huang MS, Matzke M, Jacobsen SE (2003) Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr Biol 13:2212–2217

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Dong Z, Tian D, Dong L, Qian W, Liu J, Liu X, Qin H, Zhai W, Gao C, Zhang K, Wang D (2020) Development and characterization of marker-free and transgene insertion site-defined transgenic wheat with improved grain storability and fatty acid content. Plant Biotechnol J 18:129–140

    Article  CAS  PubMed  Google Scholar 

  • Carthew RW (2001) Gene silencing by double-stranded RNA. Curr Opin Cell Biol 13:244–248

    Google Scholar 

  • Cenik ES, Fukunaga R, Lu G, Dutcher R, Wang Y (2011) Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease. Mol Cell 42:172–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360

    Article  CAS  PubMed  Google Scholar 

  • Chai JF, Zhang CM, Ma XY, Wang HB (2016a) Molecular identification of ω-secalin gene expression activity in a wheat 1B/1R translocation cultivar. J Integr Agric 15:2712–2718

    Google Scholar 

  • Chai JF, Wang HB, Ma XY, Zhang CM, Dong FS (2016b) Effect of ω-secalin gene silencing on processing quality of wheat 1B/1R translocation line. Acta Agron Sin 42:627–632

    Google Scholar 

  • Chen Y, Gao Q, Huang M et al (2015) Characterization of RNA silencing components in the plant pathogenic fungus fusarium graminearum. Sci Rep 5(12500)

    Google Scholar 

  • Chen W, Kastner C, Nowara D, Oliveira-Garcia E, Rutten T, Zhao Y, Deising HB, Kumlehn J, Schweizer P (2016) Host-induced silencing of Fusarium culmorum genes protects wheat from infection. J Exp Bot 67:4979–4991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng W, Song X, Li H, Cao L, Sun K, Qiu X, Xu Y, Yang P, Huang T, Zhang J (2015) Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight andseedling blight in wheat. Plant Biotechnol J 13:1335–1345

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Song X, Li H et al (2015) Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to fusarium head blight and seedling blight in wheat. Plant Biotechnol J 13(9):1335–1345

    Article  CAS  PubMed  Google Scholar 

  • Christensen AB, Thordal-Christensen H, Zimmermann G, Gjetting T, Lyngkjær MF, Dudler R, Schweizer P (2004) The Germinlike protein GLP4 exhibits superoxide dismutase activity and is an important component of quantitative resistance in wheat and barley. Mol Plant Microbe Interact 17:109–117

    Article  CAS  PubMed  Google Scholar 

  • Cogoni C, Macino G (1999) Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399:166–169

    Article  CAS  PubMed  Google Scholar 

  • Cruz LF, Rupp JLS, Trick HN, Fellers JP (2014) Stable resistance to Wheat streak mosaic virus in wheat mediated by RNAi. Vitro Cell Dev Plant 50:665–672

    Article  CAS  Google Scholar 

  • Daniels SM, Melendez CE, Scarborough RJ, Daher A, Christensen HS (2009) Characterization of the TRBP domain required for Dicer interaction and function in RNA interference. BMC Mol Biol. 10(1):38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Douchkov D, Nowara D, Zierold U, Schweizer P (2005) A high-throughput gene-silencing system for the functional assessment of defenserelated genes in barley epidermal cells. Mol Plant Microbe Interact 18:755–761

    Article  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60:469–480

    Google Scholar 

  • Eamens AL, Smith NA, Curtin SJ, Wang M, Waterhouse PM (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 2219–2235

    Google Scholar 

  • Earley KW, Haag JR, Pontes O (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  CAS  PubMed  Google Scholar 

  • Fahim M, Millar AA, Wood CC, Larkin PJ (2012) Resistance to Wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol J 10:150–163

    Article  CAS  PubMed  Google Scholar 

  • Fire A (1999) RNA-triggered gene silencing. Trends Genet 15(9):358–363

    Article  CAS  PubMed  Google Scholar 

  • Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12:257–269

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Uauy C, Blechl A, Dubcosky J (2007) RNA interference for wheat functional analysis. Transgenic Res 16:689–701

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Uauy C, Blechl A, Dubcovsky J (2007) RNA interference for wheat functional gene analysis. Transgenic Res 16(6):689–701. https://doi.org/10.1007/s11248-007-9150-7

    Article  CAS  PubMed  Google Scholar 

  • Fu M, Xu M, Zhou T et al (2014) Transgenic expression of a functional fragment of harpin protein Hpa1 in wheat induces the phloem-based defence against English grain aphid. J Exp Bot 65(6):1439–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Humanes J, Pistón F, Hernando A, Alvarez JB, Shewry PR, Barro F (2008) Silencing of g-gliadins by RNA interference (RNAi) in bread wheat. J Cereal Sci 48:565–568

    Article  CAS  Google Scholar 

  • Gil-Humanes J, Pistón F, Hernando A, Alvarez JB, Shewry PR et al (2008) Silencing of c-gliadins by RNA interference (RNAi) in bread wheat. J Cereal Sci 48:565–568

    Article  CAS  Google Scholar 

  • Gil-Humanes J, Pistón F, Hernando A, Álvarez JB, Shewry PR, Barro F (2008) Silencing of γ-gliadins by RNA interference (RNAi) in bread wheat. J Cereal Sci 48:565–568

    Article  CAS  Google Scholar 

  • Gil-Humanes J, Pistón F, Tollefsen S, Sollid LM, Barro F (2010) Effective shutdown in the expression of celiac disease-related wheat gliadin T-cell epitopes by RNA interference. Proc Natl Acad Sci USA 107:17023–17028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Humanes J, Pistón F, Giménez MJ, Martín A, Barro F (2012a) The introgression of RNAi silencing of γ-gliadins into commercial lines of bread wheat changes the mixing and technological properties of the dough. PLoS ONE 7:e45937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Humanes J, Pistón F, Rosell CM, Barro F (2012b) Significant downregulation of c-gliadins has minor effect on gluten and starch properties of bread wheat. J Cereal Sci https://doi.org/10.1016/j.jcs.2012.02.009

  • Gil-Humanes J, Pistón F, Giménez MJ, Martín A, Barro F (2012b) The Introgression of RNAi Silencing of c-Gliadins into Commercial Lines of Bread Wheat Changes the Mixing and Technological Properties of the Dough. PLoS ONE 7(9):e45937. https://doi.org/10.1371/journal.pone.0045937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Humanes J, Pistón F, Barro F, Rosell CM (2014) The shutdown of celiac disease-related gliadin epitopes in bread wheat by RNAi provides flours with increased stability and better tolerance to over-mixing. PLoS ONE 9:e91931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammond SM (2005) Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett 579(26):5822–5829

    Article  CAS  PubMed  Google Scholar 

  • Han J, Pedersen JS, Kwon SC, Belair CD, Kim YK, Yeom KH, Haussler D, Blelloch R, Kim VN (2009) Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136(1):75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidebrecht RW Jr (2017) Delivery strategies: RNA interference in agriculture and human health. Pest Manag Sci 73:686–691

    Google Scholar 

  • Helliwell CA, Waterhouse PM (2003) Constructs and methods for highthroughput gene silencing in plants. Methods 30:289–295

    Article  CAS  PubMed  Google Scholar 

  • Helliwell CA, Waterhouse PM (2005) Constructs and methods for hairpin RNA-mediated gene silencing in plants. Methods Enzymol 392:24–35

    Article  CAS  PubMed  Google Scholar 

  • Helliwell CA, Wesley SV, Wielopolska AJ, Waterhouse PM (2002) Highthroughput vectors for efficient gene silencing in plants. Funct Plant Biol 29:1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Hiraguri A, Itoh R, Kondo N, Nomura Y, Aizawa D, Murai Y, Koiwa H, Seki M, Shinozaki K, Fukuhara T (2005) Specific interactions between Dicer-like proteins and HYL1/DRB family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol Biol 57:173–188

    Article  CAS  PubMed  Google Scholar 

  • Hirai S, Oka S, Adachi E, Kodama H (2007) The effects of spacer sequences on silencing efficiency of plant RNAi vectors. Plant Cell Rep 26:651–659

    Article  CAS  PubMed  Google Scholar 

  • Isabela TL-T, Junior JDAS, Martins-de-Sa D, Viana AAB, Carneiro RMDG, Togawa RC, Almeida-Engler Jd, Batista JAN, Silva MCM, Fragoso RR, Grossi-de-Sa MF (2014) knock-down of heat-shock protein 90 and isocitrate lyase gene expression reduced root-knot nematode production. Am Phytopathol Soc 105(5):629

    Google Scholar 

  • Jabłoński B, Ogonowska H, Szala K, Bajguz A, Orczyk W, Nadolska-Orczyk A (2020) Silencing of TaCKX1 mediates expression of other TaCKX genes to increase grain yield in wheat. BioRxiv https://doi.org/10.1101/2020.01.07.897421

  • Joga MR, Zotti MJ, Smagghe G, Christiaens O (2016) RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Front Physiol 7:553

    Google Scholar 

  • Karimi M, Depicker A, Hilson P (2007) Recombinational cloning with plant gateway vectors. Plant Physiol 145:1144–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau P-W, Guiley KZ, De N, Potter CS, Carragher B, MacRae IJ (2012) The molecular architecture of human Dicer. Nat Struct Mol Biol 19(4):436–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee W, Hammond-Kosack KE, Kanyuka K (2012) Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: virus-induced gene silencing, host-mediated gene silencing, and virus-mediated overexpression of heterologous protein. Plant Physiol 160(2):582–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leng Y, Wu C, Liu Z, Friesen TL, Rasmussen JB, Zhong S (2011) RNA-mediated gene silencing in the cereal fungal pathogen Cochliobolus sativus. Mol Plant Pathol 12(2):289–298

    Article  CAS  PubMed  Google Scholar 

  • Li JR, Zhao W, Li QZ, Ye XG, An BY, Li X, Zhang XS (2005) RNA silencing of Waxy gene results in low levels of amylose in the seeds of transgenic wheat (Triticum aestivum L.). Acta Genet Sin 32:846–854

    CAS  PubMed  Google Scholar 

  • Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3’-end uridylation activity in Arabidopsis. Curr Biol 15:1501–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Guan R, Guo H, Miao X (2015) New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests. Plant Cell Environ 2015(38):2277–2285. https://doi.org/10.1111/pce.12546

  • Li Y, Song G, Gao J, Zhang S, Zhang R, Li W, Chen M, Liu M, Xia X, Risacher T, Li G (2018) Enhancement of grain number per spike by RNA interference of cytokinin oxidase 2 gene in bread wheat. Hereditas 155:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Song G, Gao J et al (2018) Enhancement of grain number per spike by RNA interference of cytokinin oxidase 2 gene in bread wheat. Hereditas 155(33)

    Google Scholar 

  • Loukoianov A, Yan L, Blechl A, Sanchez A, Dubcovsky J (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol 138:2364–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loukoianov A, Yan L, Blechl A (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol 138(4):2364–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, Fedoroff N (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303(5654):95–98

    Article  CAS  PubMed  Google Scholar 

  • Ma J-B, Ye K, Patel DJ (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429(6989):318–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacRae IJ, Doudna JA (2007) Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 17(1):138–145

    Article  CAS  PubMed  Google Scholar 

  • Mallory A, Vaucheret H (2010) Form, function, and regulation of Argonaute proteins. Plant Cell 22:3879–3889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGinnis K, Murphy N, Carlson AR, Akula A, Akula C, Basinger H, Carlson M, Hermanson P, Kovacevic N, McGill MA, Seshadri V, Yoyokie J, Cone K, Kaeppler HF, Kaeppler SM, Springer NM (2007) Assessing the efficiency of RNA interference for maize functional genomics. Plant Physiol 143:1441–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913

    Google Scholar 

  • Millar AA, Waterhouse PM (2005) Plant and animal microRNAs: similarities and differences. Funct Integr Genomics 5:129–135

    Article  CAS  PubMed  Google Scholar 

  • Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C et al (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3:16207. https://doi.org/10.1038/nplants.2016.207

  • Niu QW, Lin SS, Reyes JL (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotecnol 24:1420–1428

    Article  CAS  Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowara D, Gay A, Lacomme C et al (2012) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. e Plant Cell 22(9):3130–3141

    Article  CAS  Google Scholar 

  • Panwar V, Jordan M, McCallum B, Bakkeren G (2018) Host-induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat. Plant Biotechnol J 16:1013–1023

    Google Scholar 

  • Pliego C, Nowara D, Bonciani G, Gheorghe DM, Xu R (2013) Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. Mol Plant Microbe Interact 26:633–642

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428

    Article  CAS  PubMed  Google Scholar 

  • Qi T, Zhu X, Tan C, Liu P, Guo J, Kang Z, Guo J (2018) Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. Plant Biotech J 16:797–807

    Article  CAS  Google Scholar 

  • Qin H, Chen F, Huan X, Machida S, Song J, Yuan YA (2010) Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein-protein interaction. RNA 16(3):474–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotech 22:326–330

    Article  CAS  Google Scholar 

  • Rupp JS, Cruz L, Trick HN, Fellers JP (2019) RNAi-mediated silencing of endogenous wheat genes EIF(Iso)4E–2 and EIF4G induce resistance to multiple RNA viruses in transgenic wheat. Crop Sci 59:2642–2651

    Article  CAS  Google Scholar 

  • Saini HK, Griffiths-Jones S, Enright AJ (2007) Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 104:19–24

    Article  Google Scholar 

  • Sasaki T, Shimizu N (2007) Evolutionary conservation of a unique amino acid sequence in human DICER protein essential for binding to Argonaute family proteins. Gene 396(2):312–320

    Article  CAS  PubMed  Google Scholar 

  • Schaefer LH, Parlange F, Buchmann G, Jung E, Wehrli A, Herren G, Müller MC, Stehlin J, Schmid R, Wicker T, Keller B, Bourras S (2020) Cross-kingdom RNAi of pathogen effectors leads to quantitative adult plant resistance in wheat. Front Plant Sci 11:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  PubMed  Google Scholar 

  • Schweizer P, Pokorny J, Schulze-Lefert P, Dudler R (2000) Doublestranded RNA interferes with gene function at the single-cell level in cereals. Plant J 24:895–903

    Article  CAS  PubMed  Google Scholar 

  • Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2165–2173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23(10):578–587

    Article  PubMed  PubMed Central  Google Scholar 

  • Song X, Gu K, Duan X et al (2018) A myosin5 dsRNA that reduces the fungicide resistance and pathogenicity of fusarium asiaticum. Pestic Biochem Physiol 150:1–9

    Article  PubMed  CAS  Google Scholar 

  • Tahbaz N, Kolb FA, Zhang H, Jaronczyk K, Filipowicz W, Hobman TC (2004) Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO Rep 5(2):189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan JCH, Jones MGK, Fosu-Nyarko J (2013) Gene silencing in root lesion nematodes (Pratylenchus spp.) significantly reduces reproduction in a plant host. Exp Parasitol 133:166–178

    Article  CAS  PubMed  Google Scholar 

  • Thomas CL, Jones L, Baulcombe DC, Maule AJ (2001) Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vector. Plant J 25:417–425

    Article  CAS  PubMed  Google Scholar 

  • Travella S, Klimm TE, Keller B (2006) RNA interference based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol 142:6–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsumi A, Kawamata T, Izumi N, Seitz H, Tomari Y (2011) Recognition of the pre-miRNA structure by Drosophila Dicer-1. Nat Struct Mol Biol 18(10):1153–1158

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006a) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006b) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, Bartel DP, Crete P (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16:69–79

    Article  CAS  PubMed  Google Scholar 

  • Verdel A, Vavasseur A, Gorrec ML, Todeschini LT (2009) Common themes in siRNA-mediated epigenetic silencing pathway. Int J Dev Biol 53(2–3):245–257

    Article  CAS  PubMed  Google Scholar 

  • Waseenegger M, Heimes S, Riedel L, Sanger HL (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567–576

    Article  Google Scholar 

  • Welker NC, Maity TS, Ye X, Aruscavage PJ, Krauchuk AA (2011) Dicer’s helicase domain discriminates dsRNA termini to promote an altered reaction mode. Mol Cell 41(5):589–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA (2001) Construct design for efficient, effective and high-thoughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  • Wielopolska A, Townley H, Moore I, Waterhouse P, Helliwell C (2005) A high-throughput inducible RNAi vector for plants. Plant Biotechnol J 3:583–590

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Duan X, Lv Y, Zhang X, Nie Z, Xie C, Ni Z, Liang R (2014) Silencing of an aphid carboxylesterase gene by use of plant-mediated RNAi impairs Sitobion avenae tolerance of Phoxim insecticides. Transgenic Res 23:389–396

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Hou Q, Zhao Y et al (2017) Silencing of a lipase maturation factor 2-like gene by wheat-mediated RNAi reduces the survivability and reproductive capacity of the grain aphid, sitobion avenae. Arch Insect Biochem Physiol 95(3): article e21392

    Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Loukoianov A, Blechl A et al (2004) ThewheatVRN2 gene is a flowering repressor down-regulated by vernalization. Science 303(5664):1640–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK et al (2007) Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 8(R96). https://doi.org/10.1186/gb-2007-8-6-r96

  • Yang D, Xu X, Zhao H, Yang S, Wang X, Zhao D, Diao Q, Hou C (2018) Diverse factors affecting efficiency of RNAi in honey bee viruses. Front Genet 9:384. https://doi.org/10.3389/fgene.2018.00384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yelin MD, Chung SM, Frankman EL, Tzfira T (2007) pSAT RNA interference vectors: a modular series for multiple gene down-regulation in plants. Plant Physiol 145:1272–1281

    Article  CAS  Google Scholar 

  • Yue SJ, Li H, Li YW, Zhu YF, Guo JK, Liu YJ, Chen Y, Jia X (2008) Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular weight glutenin subunit by RNA interference. J Cereal Sci 47:153–161

    Article  CAS  Google Scholar 

  • Yue S, Li H, Li Y et al (2008) Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular weight glutenin subunit by RNA interference. J Cereal Sci 47(2):153–161

    Article  CAS  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: Double-stranded RNA directs the ATP dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, Gonzalez AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Gene Dev 25(23):2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R (2015) Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991–994. https://doi.org/10.1126/science.1261680

  • Zhao XY, Hong P, Wu JY et al (2016) The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat. Plant Physiol 170:1578–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Sui X, Xu L et al (2018) Plant-mediatedRNAi of grain aphid CHS1 gene confers common wheat resistance against aphids. Pest Manag Sci 74(12):2754–2760

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Qi T, Yang Q, He F, Tan C, Ma W, Voegele RT, Kang Z, Guo J (2017) Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiol 175:1853–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Qi T, Yang Q et al (2017) Host-induced gene silencing of the MAPKK gene PsFUZ7 confers stable resistance to wheat stripe rust. Plant Physiol 175(4):1853–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Chang M, Nie P, Secombes CJ (2009) Origin and evolution of the RIG-I like RNA helicase gene family. BMC Evol Biol 9:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyabrata Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sen, P., Lata, C., Kiran, K., Mondal, T.K. (2021). RNA Interference (RNAi) in Functional Genomics of Wheat. In: Sarmah, B.K., Borah, B.K. (eds) Genome Engineering for Crop Improvement. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-63372-1_10

Download citation

Publish with us

Policies and ethics