Skip to main content

Role of Epigenetics in Colorectal Cancer

  • Chapter
  • First Online:
Colon Cancer Diagnosis and Therapy

Abstract

In 2018 alone, colorectal cancer (CRC) accounted for 10.2% among all cancer cases. It is known to be a consequence of accumulated alterations in the genome. Several studies on genetics have improved our understanding of CRC. While genetics play its role as the first code of genome, role of epigenetics in CRC as the second code of genome has been highlighted in the last decades. We focus on the essential factors like DNA methylation drivers-writer, reader, eraser and non-coding RNA, miRNA and long non-coding RNAs associated with CRC. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRC:

Colorectal cancer

LncRNA:

Long non-coding RNA

MBD1:

Methyl-CpG binding domain protein 1

miRNA:

MicroRNA

ncRNAs:

Non-coding RNAs

PVT1:

Plasmacytoma variant translocation 1

TET:

Ten-eleven translocation methylcytosine

References

  1. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Arnold M, et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–91.

    Article  PubMed  Google Scholar 

  3. Puccini A, et al. Colorectal cancer: epigenetic alterations and their clinical implications. Biochim Biophys Acta Rev Cancer. 2017;1868(2):439–48.

    Article  CAS  PubMed  Google Scholar 

  4. Shao WH, et al. A hereditable mutation of MSH2 gene associated with lynch syndrome in a five generation Chinese family. Cancer Manag Res. 2020;12:1469–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weinhold N, et al. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat Genet. 2014;46(11):1160–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.

    Article  CAS  Google Scholar 

  7. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    Article  CAS  PubMed  Google Scholar 

  8. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92.

    Article  CAS  PubMed  Google Scholar 

  9. Mahmood N, Rabbani SA. DNA methylation readers and cancer: mechanistic and therapeutic applications. Front Oncol. 2019;9:489.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Meehan RR, et al. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell. 1989;58(3):499–507.

    Article  CAS  PubMed  Google Scholar 

  11. Hudson NO, Buck-Koehntop BA. Zinc finger readers of methylated DNA. Molecules. 2018;23(10):2555.

    Article  PubMed Central  CAS  Google Scholar 

  12. Prokhortchouk A, et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 2001;15(13):1613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He YF, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333(6047):1303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Otani J, et al. Cell cycle-dependent turnover of 5-hydroxymethyl cytosine in mouse embryonic stem cells. PLoS One. 2013;8(12):e82961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hashimoto H, et al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 2012;40(11):4841–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Williams K, et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature. 2011;473(7347):343–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tse JWT, et al. Aberrant DNA methylation in colorectal cancer: what should we target? Trends Cancer. 2017;3(10):698–712.

    Article  CAS  PubMed  Google Scholar 

  18. Kanai Y, et al. Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett. 2003;192(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  19. Wong JJ, Hawkins NJ, Ward RL. Colorectal cancer: a model for epigenetic tumorigenesis. Gut. 2007;56(1):140–8.

    Article  CAS  PubMed  Google Scholar 

  20. Subramaniam D, et al. DNA methyltransferases: a novel target for prevention and therapy. Front Oncol. 2014;4:80.

    Article  PubMed  PubMed Central  Google Scholar 

  21. MacLeod AR, Szyf M. Expression of antisense to DNA methyltransferase mRNA induces DNA demethylation and inhibits tumorigenesis. J Biol Chem. 1995;270(14):8037–43.

    Article  CAS  PubMed  Google Scholar 

  22. Rountree MR, et al. DNA methylation, chromatin inheritance, and cancer. Oncogene. 2001;20(24):3156–65.

    Article  CAS  PubMed  Google Scholar 

  23. Qi L, Ding Y. Screening of tumor suppressor genes in metastatic colorectal cancer. Biomed Res Int. 2017;2017:2769140.

    PubMed  PubMed Central  Google Scholar 

  24. Park HY, et al. Differential promoter methylation may be a key molecular mechanism in regulating BubR1 expression in cancer cells. Exp Mol Med. 2007;39(2):195–204.

    Article  CAS  PubMed  Google Scholar 

  25. Sansom OJ, et al. Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nat Genet. 2003;34(2):145–7.

    Article  CAS  PubMed  Google Scholar 

  26. Pancione M, et al. Epigenetic silencing of peroxisome proliferator-activated receptor gamma is a biomarker for colorectal cancer progression and adverse patients’ outcome. PLoS One. 2010;5(12):e14229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De La Rosa-Velazquez IA, et al. Epigenetic regulation of the human retinoblastoma tumor suppressor gene promoter by CTCF. Cancer Res. 2007;67(6):2577–85.

    Article  PubMed  CAS  Google Scholar 

  28. Lopes EC, et al. Kaiso contributes to DNA methylation-dependent silencing of tumor suppressor genes in colon cancer cell lines. Cancer Res. 2008;68(18):7258–63.

    Article  CAS  PubMed  Google Scholar 

  29. Riccio A, et al. The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability. Nat Genet. 1999;23(3):266–8.

    Article  CAS  PubMed  Google Scholar 

  30. Huang J, et al. Enhanced expression of SETDB1 possesses prognostic value and promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma. Oncol Rep. 2018;40(2):1017–25.

    CAS  PubMed  Google Scholar 

  31. Chen K, et al. Histone Methyltransferase SETDB1 promotes the progression of colorectal cancer by inhibiting the expression of TP53. J Cancer. 2017;8(16):3318–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Rawluszko-Wieczorek AA, et al. Clinical significance of DNA methylation mRNA levels of TET family members in colorectal cancer. J Cancer Res Clin Oncol. 2015;141(8):1379–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Seshagiri S, et al. Recurrent R-spondin fusions in colon cancer. Nature. 2012;488(7413):660–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ichimura N, et al. Aberrant TET1 methylation closely associated with CpG Island Methylator phenotype in colorectal cancer. Cancer Prev Res (Phila). 2015;8(8):702–11.

    Article  CAS  Google Scholar 

  35. Noreen F, et al. DNA methylation instability by BRAF-mediated TET silencing and lifestyle-exposure divides colon cancer pathways. Clin Epigenetics. 2019;11(1):196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang Y, et al. Loss of nuclear localization of TET2 in colorectal cancer. Clin Epigenetics. 2016;8:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Djebali S, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen H, Xu Z, Liu D. Small non-coding RNA and colorectal cancer. J Cell Mol Med. 2019;23(5):3050–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Michael MZ, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1(12):882–91.

    CAS  PubMed  Google Scholar 

  40. Yong FL, Law CW, Wang CW. Potentiality of a triple microRNA classifier: miR-193a-3p, miR-23a and miR-338-5p for early detection of colorectal cancer. BMC Cancer. 2013;13:280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Volinia S, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Asangani IA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27(15):2128–36.

    Article  CAS  PubMed  Google Scholar 

  43. Ragusa M, et al. Non-coding landscapes of colorectal cancer. World J Gastroenterol. 2015;21(41):11709–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koga Y, et al. MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev Res (Phila). 2010;3(11):1435–42.

    Article  Google Scholar 

  45. Wang CJ, et al. Clinicopathological significance of microRNA-31, −143 and −145 expression in colorectal cancer. Dis Markers. 2009;26(1):27–34.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tazawa H, et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A. 2007;104(39):15472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iliou MS, et al. Impaired DICER1 function promotes stemness and metastasis in colon cancer. Oncogene. 2014;33(30):4003–15.

    Article  CAS  PubMed  Google Scholar 

  48. O’Brien SJ, et al. The role of the miR-200 family in epithelial-mesenchymal transition in colorectal cancer: a systematic review. Int J Cancer. 2018;142(12):2501–11.

    Article  PubMed  CAS  Google Scholar 

  49. Korpal M, et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med. 2011;17(9):1101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu MD, Qi P, Du X. Long non-coding RNAs in colorectal cancer: implications for pathogenesis and clinical application. Mod Pathol. 2014;27(10):1310–20.

    Article  CAS  PubMed  Google Scholar 

  52. Ji P, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031–41.

    Article  PubMed  CAS  Google Scholar 

  53. Xu C, et al. MALAT-1: a long non-coding RNA and its important 3′ end functional motif in colorectal cancer metastasis. Int J Oncol. 2011;39(1):169–75.

    PubMed  Google Scholar 

  54. Davies H, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  CAS  PubMed  Google Scholar 

  55. Silva-Fisher JM, et al. Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nat Commun. 2020;11(1):2156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Di W, et al. Long noncoding RNA SNHG14 facilitates colorectal cancer metastasis through targeting EZH2-regulated EPHA7. Cell Death Dis. 2019;10(7):514.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Guo Q, et al. BRAF-activated long non-coding RNA contributes to colorectal cancer migration by inducing epithelial-mesenchymal transition. Oncol Lett. 2014;8(2):869–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ling H, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013;23(9):1446–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nissan A, et al. Colon cancer associated transcript-1: a novel RNA expressed in malignant and pre-malignant human tissues. Int J Cancer. 2012;130(7):1598–606.

    Article  CAS  PubMed  Google Scholar 

  60. Zuo S, et al. Long non-coding RNA MEG3 activated by vitamin D suppresses glycolysis in colorectal cancer via promoting c-Myc degradation. Front Oncol. 2020;10:274.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wu H, et al. lncRNA PVT1 promotes tumorigenesis of colorectal cancer by stabilizing miR-16-5p and interacting with the VEGFA/VEGFR1/AKT Axis. Mol Ther Nucleic Acids. 2020;20:438–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takahashi Y, et al. Amplification of PVT-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers. Br J Cancer. 2014;110(1):164–71.

    Article  CAS  PubMed  Google Scholar 

  63. Tseng YY, et al. PVT1 dependence in cancer with MYC copy-number increase. Nature. 2014;512(7512):82–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ogunwobi OO, Mahmood F, Akingboye A. Biomarkers in colorectal cancer: current research and future prospects. Int J Mol Sci. 2020;21(15):5311.

    Article  CAS  PubMed Central  Google Scholar 

  65. Shuwen H, et al. Competitive endogenous RNA in colorectal cancer: a systematic review. Gene. 2018;645:157–62.

    Article  PubMed  CAS  Google Scholar 

  66. Yu X, et al. Long intergenic non-protein-coding RNA 1567 (LINC01567) acts as a “sponge” against microRNA-93 in regulating the proliferation and tumorigenesis of human colon cancer stem cells. BMC Cancer. 2017;17(1):716.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wu Q, et al. LncRNA MALAT1 induces colon cancer development by regulating miR-129-5p/HMGB1 axis. J Cell Physiol. 2018;233(9):6750–7.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang R, et al. Long noncoding RNA plasmacytoma variant translocation 1 (PVT1) promotes colon cancer progression via endogenous sponging miR-26b. Med Sci Monit. 2018;24:8685–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Obul Reddy Bandapalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miao, B., Gupta, S., Mathur, M., Suravajhala, P., Bandapalli, O.R. (2021). Role of Epigenetics in Colorectal Cancer. In: Nagaraju, G.P., Shukla, D., Vishvakarma, N.K. (eds) Colon Cancer Diagnosis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63369-1_6

Download citation

Publish with us

Policies and ethics