Skip to main content

Conformal Electronics Therapy for Defibrillation

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy

Abstract

Defibrillation remains the only effective therapy against sudden cardiac death. However, the current coil-based lead ICD devices are limited by high defibrillation threshold (DFT) and low arrhythmia sensing resolution, which can result in inappropriate and painful shocks adversely affecting the quality of life. Emerging classes of materials and mechanics concepts in the field of flexible and stretchable electronics have created new opportunities for integrating high-performance electronics with the human body and its organs and various tissues. These conformal electronics devices offer a platform for high-definition arrhythmia sensing to minimize inappropriate shocks and improve therapy and high-definition therapy delivery circuit to reduce DFT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Efimov IR. A shocking experience: ionic modulation of virtual electrodes in defibrillation. Circ Res. 2000;87:429. https://doi.org/10.1161/01.RES.87.6.429.

    Article  CAS  PubMed  Google Scholar 

  2. Al-khadra A, Nikolski V, Efimov IR. Integrative physiology the role of electroporation in defibrillation. Circ Res. 2000;87:797–804. https://doi.org/10.1161/01.RES.87.9.797.

    Article  CAS  PubMed  Google Scholar 

  3. Godemann F, Butter C, Lampe F, Linden M, Schlegl M, Schultheiss HP, Behrens S. Panic disorders and agoraphobia: side effects of treatment with an implantable cardioverter/defibrillator. Clin Cardiol. 2004;27:321. https://doi.org/10.1002/clc.4960270604.

    Article  PubMed  Google Scholar 

  4. Gutbrod SR, Efimov IR. A shocking past: a walk through generations of defibrillation development. IEEE Trans Biomed Eng. 2014;61:1466. https://doi.org/10.1109/TBME.2014.2301035.

    Article  PubMed  Google Scholar 

  5. Daubert JP, Zareba W, Cannom DS, McNitt S, Rosero SZ, Wang P, Schuger C, Steinberg JS, Higgins SL, Wilber DJ, Klein H, Andrews ML, Hall WJ, Moss AJ. Inappropriate implantable cardioverter-defibrillator shocks in MADIT II. Frequency, mechanisms, predictors, and survival impact. J Am Coll Cardiol. 2008;51(14):1357–65. https://doi.org/10.1016/j.jacc.2007.09.073.

    Article  PubMed  Google Scholar 

  6. Vollmann D, Lüthje L, Vonhof S, Unterberg C. Inappropriate therapy and fatal proarrhythmia by an implantable cardioverter-defibrillator. Heart Rhythm. 2005;2(3):307–9. https://doi.org/10.1016/j.hrthm.2004.11.019.

    Article  PubMed  Google Scholar 

  7. Janardhan AH, Li W, Fedorov VV, Yeung M, Wallendorf MJ, Schuessler RB, Efimov IR. A novel low-energy electrotherapy that terminates ventricular tachycardia with lower energy than a biphasic shock when antitachycardia pacing fails. J Am Coll Cardiol. 2012;60(23):2393–8. https://doi.org/10.1016/j.jacc.2012.08.1001.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Harrison L, Ideker RE, Smith WM, Klein GJ, Kasell J, Wallace AG, Gallagher JJ. The sock electrode array: a tool for determining global epicardial activation during unstable arrhythmias. Pacing Clin Electrophysiol. 1980;3:531. https://doi.org/10.1111/j.1540-8159.1980.tb05272.x.

    Article  CAS  PubMed  Google Scholar 

  9. Xu L, Gutbrod SR, Bonifas AP, Su Y, Sulkin MS, Lu N, Chung HJ, Jang KI, Liu Z, Ying M, Lu C, Webb RC, Kim JS, Laughner JI, Cheng H, Liu Y, Ameen A, Jeong JW, Kim GT, Huang Y, Efimov IR, Rogers JA. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat Commun. 2014;5:1–10. https://doi.org/10.1038/ncomms4329.

    Article  CAS  Google Scholar 

  10. Chung HJ, Sulkin MS, Kim JS, Goudeseune C, Chao HY, Song JW, Yang SY, Hsu YY, Ghaffari R, Efimov IR, Rogers JA. Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing ischemia. Adv Healthc Mater. 2014;3(1):59–68. https://doi.org/10.1002/adhm.201300124.

    Article  CAS  PubMed  Google Scholar 

  11. Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, Wu J, Won SM, Tao H, Islam A, Yu KJ. Epidermal electronics. Science. 2011;333(6044):838–43. https://doi.org/10.1126/science.1206157.

    Article  CAS  PubMed  Google Scholar 

  12. Ying M, Bonifas AP, Lu N, Su Y, Li R, Cheng H, Ameen A, Huang Y, Rogers JA. Silicon nanomembranes for fingertip electronics. Nanotechnology. 2012;23:344004. https://doi.org/10.1088/0957-4484/23/34/344004.

    Article  CAS  PubMed  Google Scholar 

  13. Yao H, Shum AJ, Cowan M, Lähdesmäki I, Parviz BA. A contact lens with embedded sensor for monitoring tear glucose level. Biosens Bioelectron. 2011;26:3290. https://doi.org/10.1016/j.bios.2010.12.042.

    Article  CAS  PubMed  Google Scholar 

  14. Kim DH, Lu N, Huang Y, Rogers JA. Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull. 2012;37:226. https://doi.org/10.1557/mrs.2012.36.

    Article  CAS  Google Scholar 

  15. Kim DH, Lu N, Ghaffari R, Rogers JA. Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. NPG Asia Mater. 2012;4:e15. https://doi.org/10.1038/am.2012.27.

    Article  CAS  Google Scholar 

  16. Xu L, Gutbrod SR, Ma Y, Petrossians A, Liu Y, Webb RC, Fan JA, Yang Z, Xu R, Whalen JJ, Weiland JD, Huang Y, Efimov IR, Rogers JA. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv Mater. 2015;27(10):1731–7. https://doi.org/10.1002/adma.201405017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fan JA, Yeo WH, Su Y, Hattori Y, Lee W, Jung SY, Zhang Y, Liu Z, Cheng H, Falgout L, Bajema M, Coleman T, Gregoire D, Larsen RJ, Huang Y, Rogers JA. Fractal design concepts for stretchable electronics. Nat Commun. 2014;5:1–8. https://doi.org/10.1038/ncomms4266.

    Article  CAS  Google Scholar 

  18. Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10:275. https://doi.org/10.1146/annurev.bioeng.10.061807.160518.

    Article  CAS  PubMed  Google Scholar 

  19. Efimov I, Ripplinger CM. Virtual electrode hypothesis of defibrillation. Heart Rhythm. 2006;3:1100. https://doi.org/10.1016/j.hrthm.2006.03.005.

    Article  PubMed  Google Scholar 

  20. Laks MM, Arzbaecher R, Bailey JJ, Geselowitz DB, Berson AS. Recommendations for safe current limits for electrocardiographs: a statement for healthcare professionals from the committee on electrocardiography, American Heart Association. Circulation. 1996;93:837. https://doi.org/10.1161/01.CIR.93.4.837.

    Article  CAS  PubMed  Google Scholar 

  21. Swerdlow CD, Olson WH, O’Connor ME, Gallik DM, Malkin RA, Laks M. Cardiovascular collapse caused by electrocardiographically silent 60-Hz intracardiac leakage current: implications for electrical safety. Circulation. 1999;99:2559. https://doi.org/10.1161/01.CIR.99.19.2559.

    Article  CAS  PubMed  Google Scholar 

  22. Beech IB, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol. 2004;15:181. https://doi.org/10.1016/j.copbio.2004.05.001.

    Article  CAS  PubMed  Google Scholar 

  23. Bazaka K, Jacob MV. Implantable devices: Issues and challenges. Electron. 2012;2:1. https://doi.org/10.3390/electronics2010001.

    Article  CAS  Google Scholar 

  24. Bowman L, Meindl JD. The packaging of implantable integrated sensors. IEEE Trans Biomed Eng. 1986;BME-33:248. https://doi.org/10.1109/TBME.1986.325807.

    Article  Google Scholar 

  25. Liu X, McCreery DB, Carter RR, Bullara LA, Yuen TGH, Agnew WF. Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Trans Rehabil Eng. 1999;7:315. https://doi.org/10.1109/86.788468.

    Article  CAS  PubMed  Google Scholar 

  26. Fang H, Yu KJ, Gloschat C, Yang Z, Song E, Chiang CH, Zhao J, Won SM, Xu S, Trumpis M, Zhong Y, Han SW, Xue Y, Xu D, Choi SW, Cauwenberghs G, Kay M, Huang Y, Viventi J, Efimov IR, Rogers JA. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat Biomed Eng. 2017;1(3):1–12. https://doi.org/10.1038/s41551-017-0038.

    Article  CAS  Google Scholar 

  27. Tian B, Cohen-Karni T, Qing Q, Duan X, Xie P, Lieber CM. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science. 2010;329:830. https://doi.org/10.1126/science.1192033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khodagholy D, Gelinas JN, Thesen T, Doyle W, Devinsky O, Malliaras GG, Buzsáki G. NeuroGrid: recording action potentials from the surface of the brain. Nat Neurosci. 2015;18:310. https://doi.org/10.1038/nn.3905.

    Article  CAS  PubMed  Google Scholar 

  29. Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y, Murase Y, Kawaguchi H, Sakurai T. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci U S A. 2005;102:12321. https://doi.org/10.1073/pnas.0502392102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yin J, Lin Z, Kayiran O, Poremba M, Altaf MS, Jerger NE, Loh GH. Modular routing design for chiplet-based systems. In: 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA): IEEE; 2018. p. 726–38. https://doi.org/10.1109/ISCA.2018.00066.

  31. Adam GC, Hoskins BD, Prezioso M, Merrikh-Bayat F, Chakrabarti B, Strukov DB. 3-D memristor crossbars for analog and neuromorphic computing applications. IEEE Trans Electron Devices. 2017;64:312. https://doi.org/10.1109/TED.2016.2630925.

    Article  Google Scholar 

  32. Kurs A, Karalis A, Moffatt R, Joannopoulos JD, Fisher P, Soljac M. Wireless power transfer via strongly. Sicnece. 2007;317(5834):83–6.

    Article  CAS  Google Scholar 

  33. Liu Y, Pharr M, Salvatore GA. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano. 2017;11:9614. https://doi.org/10.1021/acsnano.7b04898.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor R. Efimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aras, K., Rogers, J.A., Efimov, I.R. (2021). Conformal Electronics Therapy for Defibrillation. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics