Skip to main content

State of the Art on Wearable and Implantable Devices for Cardiac and Respiratory Monitoring

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy

Abstract

Ambulatory monitoring devices are enabling a new paradigm of healthcare by continuously collecting, processing, and interpreting long-term data aiming to provide reliable clinical diagnoses. These devices are becoming increasingly popular, both among healthcare practitioners and patients, for long-term continuous monitoring of cardiac diseases. Advancements in the fields of hardware technologies and software algorithms have enabled solutions that are both affordable and reliable, allowing monitoring of vulnerable populations from the comfort of their homes. These devices provide early detection of important physiological events, providing patients with timely alerts to seek medical attention. In this chapter, we aim to summarize recent developments and challenges in the area of ambulatory and remote monitoring solutions for cardiac and respiratory diagnostics. We present solutions based on wearable devices, smartphones/tablets, as well as implantable sensors. Finally, we present an overview of the limitations of current technologies, their effectiveness, and adoption by the general population, and we discuss some of the recently proposed methods that may help overcome those challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil. 2012;9:1–17.

    Google Scholar 

  2. Kuehn BM. Telemedicine helps cardiologists extend their reach. Circulation. 2016;134:1189–91.

    Article  PubMed  Google Scholar 

  3. Scirica BM, Morrow DA, Budaj A, Dalby AJ, Mohanavelu S, Qin J, et al. Ischemia detected on continuous electrocardiography after acute coronary syndrome. Observations from the MERLIN-TIMI 36 (metabolic efficiency with Ranolazine for less ischemia in non-ST-elevation acute coronary syndrome-thrombolysis in myocardial Infarcti). J Am Coll Cardiol. 2009;53:1411–21.

    Article  PubMed  Google Scholar 

  4. Ajami S, Teimouri F. Features and application of wearable biosensors in medical care. J Res Med Sci. 2015;20:1208–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mobilesmith, “Patient Centered Care: One App At a Time,” 2016.

    Google Scholar 

  6. Charlton P, Birrenkott DA, Bonnici T, Pimentel MAF, Johnson AEW, Alastruey J, Tarassenko L, Watkinson PJ, Beale R, Clifton DA. Breathing rate estimation from the electrocardiogram and Photoplethysmogram: a review. IEEE Rev Biomed Eng. 2017;11:2–20.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sayadi O, Puppala D, Ishaque N, Doddamani R, Merchant FM, Barrett C, Singh JP, Heist EK, Mela T, Martínez JP, Laguna P, Armoundas AA. A novel method to capture the onset of dynamic electrocardiographic ischemic changes and its implications to arrhythmia susceptibility. J Am Heart Assoc. 2014;3:e001055. https://doi.org/10.1161/JAHA.114.001055.

  8. Weiss EH, Sayadi O, Ramaswamy P, Merchant FM, Sajja N, Foley L, Laferriere S, Armoundas AA. An optimized method for the estimation of the respiratory rate from electrocardiographic signals: implications for estimating minute ventilation. AJP Heart Circulat Physiol. 2014;307:H437–47.

    Article  CAS  Google Scholar 

  9. Ungureanu C, Arends J. Real-time extraction of the respiratory rate from photoplethysmographic signal using wearable devices. Proceedings of the European Conference on Ambient Intellligence, p. 1–17, 2014.

    Google Scholar 

  10. Tomlinson S, Behrmann S, Cranford J, Louie M, Hashikawa A. Accuracy of smartphone-based pulse oximetry compared with hospital-grade pulse oximetry in healthy children. Telemed e-Health. 2017;24., pp. tmj.2017.0166-tmj.2017.0166

    Google Scholar 

  11. Hu Y, Kim EG, Cao G, Liu S, Xu Y. Physiological acoustic sensing based on accelerometers: a survey for mobile healthcare. Ann Biomed Eng. 2014;42:2264–77.

    Article  PubMed  Google Scholar 

  12. Lee S-S, Salole E. Innovative medical technology, health technology assessment, and health policy: the case of remote patient monitoring of cardiac implantable electronic devices in South Korea. Telemed e-Health. 2017;23:25–9.

    Article  Google Scholar 

  13. Walsh JA, Topol EJ, Steinhubl SR. Novel wireless devices for cardiac monitoring. Circulation. 2014;130:573–81.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hopenfeld B, John MS, Fischell DR, Medeiros P, Guimarães HP, Piegas LS. The Guardian: an implantable system for chronic ambulatory monitoring of acute myocardial infarction. J Electrocardiol. 2009;42:481–6.

    Article  PubMed  Google Scholar 

  15. Fischell TA, Fischell DR, Avezum A, John MS, Holmes D, Foster M, Kovach R, Medeiros P, Piegas L, Guimaraes H, Gibson CM. Initial clinical results using intracardiac electrogram monitoring to detect and alert patients during coronary plaque rupture and ischemia. J Am Coll Cardiol. 2010;56:1089–98.

    Article  PubMed  Google Scholar 

  16. Barrett PM, Komatireddy R, Haaser S, Topol S, Sheard J, Encinas J, Fought AJ, Topol EJ. Comparison of 24-hour Holter monitoring with 14-day novel adhesive patch electrocardiographic monitoring. Am J Med. 2014;127:95.e11–7.

    Article  Google Scholar 

  17. Schreiber D, Sattar A, Drigalla D, Higgins S. Ambulatory cardiac monitoring for discharged emergency department patients with possible cardiac arrhythmias. Western J Emerg Med. 2014;15:194–8.

    Article  Google Scholar 

  18. Engel JM, Mehta V, Fogoros R, Chavan A. Study of arrhythmia prevalence in NUVANT Mobile Cardiac Telemetry system patients, In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, p. 2440–3.

    Google Scholar 

  19. Li SH, Lin BS, Wang CA, Yang CT, Lin BS. Design of wearable and wireless multi-parameter monitoring system for evaluating cardiopulmonary function. Med Eng Phys. 2017;47:144–50.

    Article  PubMed  Google Scholar 

  20. Digiglio P, Li R, Wang W, Pan T. Microflotronic arterial tonometry for continuous wearable non-invasive hemodynamic monitoring. Ann Biomed Eng. 2014;42:2278–88.

    Article  PubMed  Google Scholar 

  21. Eric SW, Maggie KD, Charles GS. A wearable cardiac monitor for long-term data acquisition and analysis. IEEE Trans Biomed Eng. 2013;60:189–92.

    Article  Google Scholar 

  22. Etemadi M, Inan OT. Wearable ballistocardiogram and seismocardiogram systems for health and performance. J Appl Physiol, pp. jap.00298.2017-jap.00298.2017. 2017;

    Google Scholar 

  23. Liu GZ, Wu D, Mei ZY, Zhu QS, Wang L. Automatic detection of respiratory rate from electrocardiogram, respiration induced plethysmography and 3D acceleration signals. J Cent South Univ. 2013;20:2423–31.

    Article  Google Scholar 

  24. Teichmann D, Matteis DD, Bartelt T, Walter M, Member S. A bendable and wearable cardiorespiratory monitoring device fusing two noncontact sensor principles. IEEE J Biomed Health Inform. 2015;19:784–93.

    Article  PubMed  Google Scholar 

  25. Dieffenderfer J. Low power wearable systems for continuous monitoring of environment and health for chronic respiratory disease. IEEE J Biomed Health Inform. 2017;20:1251–64.

    Article  Google Scholar 

  26. Hernandez J, Li Y, Rehg JM, Picard RW. Cardiac and respiratory parameter estimation using head-mounted motion-sensitive sensors. EAI Endorsed Trans Pervasive Health Technol. 2015;1:e2.

    Article  Google Scholar 

  27. Khandwalla RM, Birkeland K, Zimmer R, Banet M, Pede S, Kedan I. Predicting heart failure events with home monitoring: use of a novel, wearable necklace to measure stroke volume, cardiac output and thoracic impedance. J Am Coll Cardiol. 2016;67:1296.

    Article  Google Scholar 

  28. Pevnick JM, Birkeland K, Zimmer R, Elad Y, Kedan I. Wearable technology for cardiology: an update and framework for the future. Trends Cardiovasc Med. 2018;28:144–50.

    Article  PubMed  Google Scholar 

  29. Lovett L. toSense’s remote patient monitoring necklace gets FDA clearance to measure stroke volume and cardiac output. 2018. Available: https://www.mobihealthnews.com/content/tosenses-remote-patient-monitoring-necklace-gets-fda-clearance-measure-stroke-volume-and

  30. Amir O, Azzam ZS, Gaspar T, Faranesh-Abboud S, Andria N, Burkhoff D, Abbo A, Abraham WT. Validation of remote dielectric sensing (ReDS™) technology for quantification of lung fluid status: Comparison to high resolution chest computed tomography in patients with and without acute heart failure. Int J Cardiol. 2016;221:841–6.

    Google Scholar 

  31. Beltrame T, Amelard R, Wong A, Hughson RL. Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models. J Appl Physiol, pp. jap.00299.2017-jap.00299.2017. 2017;

    Google Scholar 

  32. Altini M, Casale P, Penders J, ten Velde G, Plasqui G, Amft O. Cardiorespiratory fitness estimation using wearable sensors: laboratory and free-living analysis of context-specific submaximal heart rates. J Appl Physiol. 2016;120:1082–96.

    Article  PubMed  Google Scholar 

  33. Chen C, Han Y, Chen Y, Lai HQ, Zhang F, Wang B, Liu KJR. TR-BREATH: time-reversal breathing rate estimation and detection. IEEE Trans Biomed Eng. 2018;65:489–501.

    Article  PubMed  Google Scholar 

  34. Drager LF, McEvoy RD, Barbe F, Lorenzi-Filho G, Redline S. Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation. 2017;136:1840–50.

    Article  PubMed  PubMed Central  Google Scholar 

  35. SleepImage, “A Clinician ’ s Guide to ADHD,” 9783319023588, 2013.

    Google Scholar 

  36. Fonseca P, Den Teuling N, Long X, Aarts RM. Cardiorespiratory sleep stage detection using conditional random fields. IEEE J Biomed Health Inform. 2017;21:956–66.

    Article  PubMed  Google Scholar 

  37. Zhang X, Kou W, Chang EIC, Gao H, Fan Y, Xu Y. Sleep stage classification based on multi-level feature learning and recurrent neural networks via wearable device. Comput Biol Med. 2018;103:71–81.

    Article  PubMed  Google Scholar 

  38. Oletic D, Arsenali B, Bilas V. Low-powerwearable respiratory sound sensing. Sensors. 2014;14:6535–66.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sohn K, Merchant FM, Sayadi O, Puppala D, Doddamani R, Sahani A, Singh JP, Heist EK, Isselbacher EM, Armoundas AA. A novel point-of-care smartphone based system for monitoring the cardiac and respiratory systems. Sci Rep. 2017;7:1–10.

    Article  CAS  Google Scholar 

  40. Sohn K, Merchant FM, Abohashem S, Kulkarni K, Singh JP, Heist EK, Owen C, Roberts JD Jr, Isselbacher EM, Sana F, Armoundas AA. Utility of a smartphone based system (cvrphone) to accurately determine apneic events from electrocardiographic signals. PLoS One. 2019;14:e0217217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yoon S, Sim JK, Cho YH. A flexible and wearable human stress monitoring patch. Sci Rep. 2016;6:1–11.

    Article  CAS  Google Scholar 

  42. Betti S, Molino Lova R, Rovini E, Acerbi G, Santarelli L, Cabiati M, Del Ry S, Cavallo F. Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Trans Biomed Eng. 2017;65:1–1.

    Google Scholar 

  43. Sohn K, Dalvin SP, Merchant FM, Kulkarni K, Sana F, Abohashem S, Singh JP, Heist EK, Owen C, Isselbacher EM, Armoundas AA. Utility of a Smartphone Based System (cvrPhone) to predict short-term arrhythmia susceptibility. Sci Rep. 2019;9:14497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kulkarni K, Merchant FM, Kassab MB, Sana F, Moazzami K, Sayadi O, Singh JP, Heist EK, Armoundas AA. Cardiac Alternans: mechanisms and clinical utility in arrhythmia prevention. J Am Heart Assoc. 2019;8:e013750.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Merchant FM, Armoundas AA. Role of substrate and triggers in the genesis of cardiac alternans, from the myocyte to the whole heart: implications for therapy. Circulation. 2012;125:539–49.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Merchant FM, Ikeda T, Pedretti RF, Salerno-Uriarte JA, Chow T, Chan PS, Bartone C, Hohnloser SH, Cohen RJ, Armoundas AA. Clinical utility of microvolt T-wave alternans testing in identifying patients at high or low risk of sudden cardiac death. Heart Rhythm. 2012;9:1256–64.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Merchant FM, Salerno-Uriarte JA, Caravati F, Falcone S, Molon G, Marangoni D, Raczak G, Danilowicz-Szymanowicz L, Pedretti RF, Sarzi Braga S, Ikeda T, Calo L, Martino A, Erciyes D, Piancastelli M, Maury P, Cohen RJ, Armoundas AA. Prospective use of microvolt T-wave Alternans testing to guide primary prevention implantable cardioverter defibrillator therapy. Circ J. 2015;79:1912–9.

    Article  PubMed  Google Scholar 

  48. Merchant FM, Sayadi O, Puppala D, Moazzami K, Heller V, Armoundas AA. A translational approach to probe the proarrhythmic potential of cardiac alternans: a reversible overture to arrhythmogenesis? Am J Physiol Heart Circ Physiol. 2014;306:H465–74.

    Article  CAS  PubMed  Google Scholar 

  49. Merchant FM, Zheng H, Bigger T, Steinman R, Ikeda T, Pedretti RF, Salerno-Uriarte JA, Klersy C, Chan PS, Bartone C, Hohnloser SH, Ruskin JN, Armoundas AA. A combined anatomic and electrophysiologic substrate based approach for sudden cardiac death risk stratification. Am Heart J. 2013;166:744–52.

    Article  PubMed  PubMed Central  Google Scholar 

  50. McManus DD, Lee J, Maitas O, Esa N, Pidikiti R, Carlucci A, Harrington J, Mick E, Chon KH. A novel application for the detection of an irregular pulse using an iPhone 4S in patients with atrial fibrillation. Heart Rhythm. 2013;10:315–9.

    Article  PubMed  Google Scholar 

  51. McManus DD. PULSESMART: pulse-based arrhythmia discrimination using a novel smartphone application. J Cardiovasc Electrophysiol. 2016;48:923–30.

    Google Scholar 

  52. Appelboom G, Camacho E, Abraham ME, Bruce SS, Dumont ELP, Zacharia BE, D’Amico R, Slomian J, Reginster JY, Bruyère O, Connolly ES. Smart wearable body sensors for patient self-assessment and monitoring. Arch Public Health. 2014;72:1–9.

    Article  Google Scholar 

  53. Narasimha D, Hanna N, Beck H, Chaskes M, Glover R, Gatewood R, Bourji M, Gudleski GD, Danzer S, Curtis AB. Validation of a smartphone-based event recorder for arrhythmia detection. PACE – Pacing Clin Electrophysiol. 2018;41:487–94.

    Article  PubMed  Google Scholar 

  54. Galloway CD, Albert DE, Freedman SB. iPhone ECG application for community screening to detect silent atrial fibrillation: a novel technology to prevent stroke. Int J Cardiol. 2013;165:193–4.

    Article  PubMed  Google Scholar 

  55. Carpenter A, Frontera A. Smart-watches: a potential challenger to the implantable loop recorder? Europace. 2016;18:791–3.

    Article  PubMed  Google Scholar 

  56. Hernandez J, McDuff DJ, Picard RW, BioPhone: physiology monitoring from peripheral smartphone motions. 2015. p. 1–4.

    Google Scholar 

  57. Reyes B, Reljin N, Kong Y, Nam Y, Chon K. Tidal volume and instantaneous respiration rate estimation using a smartphone camera. IEEE J Biomed Health Inform. 2016;2194:764–77.

    Google Scholar 

  58. Chandrasekhar A, Kim C-S, Naji M, Natarajan K, Hahn J-O, Mukkamala R. Smartphone-based blood pressure monitoring via the oscillometric finger-pressing method. Sci Transl Med. 2018;10:eaap8674.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bergmann JHM, Chandaria V, McGregor A. Wearable and implantable sensors: the patient’s perspective. Sensors (Switzerland). 2012;12:16695–709.

    Article  Google Scholar 

  60. Mobilesmith, “How mobile apps can reduce preventable readmissions,” 2015.

    Google Scholar 

  61. Salesforce, “2015 state of the connected patient report,” 2016.

    Google Scholar 

  62. Kekade S, Hseieh CH, Islam MM, Atique S, Mohammed Khalfan A, Li YC, Abdul SS. The usefulness and actual use of wearable devices among the elderly population. Comput Methods Prog Biomed. 2018;153:137–59.

    Article  Google Scholar 

  63. Evans J, Papadopoulos A, Silvers CT, Charness N, Boot WR, Schlachta-Fairchild L, Crump C, Martinez M, Ent CB. Remote health monitoring for older adults and those with heart failure: adherence and system usability. Telemed e-Health. 2016;22:480–8.

    Article  Google Scholar 

  64. Gokalp H, de Folter J, Verma V, Fursse J, Jones R, Clarke M. Integrated telehealth and telecare for monitoring frail elderly with chronic disease. Telemed e-Health, pp. tmj.2017.0322-tmj.2017.0322. 2018;

    Google Scholar 

  65. Weeks DL, Sprint GL, Stilwill V, Meisen-Vehrs AL, Cook DJ. Implementing wearable sensors for continuous assessment of daytime heart rate response in inpatient rehabilitation. Telemed e-Health, pp. tmj.2017.0306-tmj.2017.0306. 2018;

    Google Scholar 

  66. Wallen MP, Gomersall SR, Keating SE, Wisløff U, Coombes JS. Accuracy of heart rate watches: implications for weight management. PLoS One. 2016;11:1–9.

    Article  CAS  Google Scholar 

  67. Pan T, Xu Y. Mobile medicine: can emerging mobile technologies enable patient-oriented medicine? Ann Biomed Eng. 2014;42:2203–4.

    Google Scholar 

  68. Mukherjee R, Ghosh S, Gupta B, Chakravarty T. A universal noninvasive continuous blood pressure measurement system for remote healthcare monitoring. Telemed e-Health. 2018;24:803–10.

    Article  Google Scholar 

  69. Zhang Z, Silva I, Wu D, Zheng J, Wu H, Wang W. Adaptive motion artefact reduction in respiration and ECG signals for wearable healthcare monitoring systems. Med Biol Eng Comput. 2014;52:1019–30.

    Article  PubMed  Google Scholar 

  70. Vegesna A, Tran M, Angelaccio M, Arcona S. Remote patient monitoring via non-invasive digital technologies: a systematic review. Telemed e-Health. 2017;23:3–17.

    Article  Google Scholar 

  71. Wicks P, Stamford J, Grootenhuis MA, Haverman L, Ahmed S. Innovations in e-health. Qual Life Res. 2014;23:195–203.

    Article  PubMed  Google Scholar 

  72. C. Personalized Medicine, “Personalized Medicine at FDA,” 2018.

    Google Scholar 

  73. Soh PJ, Vandenbosch GAE, Mercuri M, Schreurs DMMP. Wearable wireless health monitoring: current developments, challenges, and future trends. IEEE Microw Mag. 2015;16:55–70.

    Article  Google Scholar 

  74. Olhede SC, Wolfe PJ. The growing ubiquity of algorithms in society: implications, impacts and innovations Subject Areas. Philos Trans A Math Phys Eng Sci. 2018;376

    Google Scholar 

Download references

Disclosure Statement

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis A. Armoundas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Armoundas, A.A., Singh, J.P., Heist, E.K., Isselbacher, E.M. (2021). State of the Art on Wearable and Implantable Devices for Cardiac and Respiratory Monitoring. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics