Skip to main content

State of the Art in Artificial Intelligence and Machine Learning Techniques for Improving Patient Outcomes Pertaining to the Cardiovascular and Respiratory Systems

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy

Abstract

With the ever-increasing amount of biomedical data gathered by hospital monitors, wearable devices, and the Internet of Things (IoT) and also with the advancement in artificial intelligence (AI) and computational hardware, there is an explosion of interest in applying AI in solving problems in biomedicine and healthcare. This chapter provides a basic introduction to AI and explains the motivation for using AI in medicine. The main body of this chapter summarizes the recent applications of AI to improve patients’ cardiovascular and respiratory system outcomes. At the end, the limitations and the forecasted future of AI in medicine are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russell SJ, Norvig P. Artificial intelligence: a modern approach. Malaysia: Pearson Education Limited; 2016.

    Google Scholar 

  2. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436.

    Article  CAS  PubMed  Google Scholar 

  3. Bishop CM. Pattern recognition and machine learning. New York, NY: Springer. 2006.

    Google Scholar 

  4. Seber GA, Lee AJ. Linear regression analysis. Hoboken, NJ: Wiley; 2012.

    Google Scholar 

  5. Hosmer DW Jr, Lemeshow S, Sturdivant RX. Applied logistic regression. Hoboken, NJ: Wiley; 2013.

    Google Scholar 

  6. Quinlan JR. Induction of decision trees. Mach Learn. 1986;1:81–106.

    Article  Google Scholar 

  7. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Article  Google Scholar 

  8. Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on Computational learning theory. 1992. p. 144–52.

    Google Scholar 

  9. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst. 2012:1097–105.

    Google Scholar 

  10. Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. Cambridge: MIT Press; 2016.

    Google Scholar 

  11. Bahrammirzaee A. A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert system and hybrid intelligent systems. Neural Comput & Applic. 2010;19:1165–95.

    Article  Google Scholar 

  12. Janai J, Güney F, Behl A, Geiger A. Computer vision for autonomous vehicles: Problems, datasets and state-of-the-art. arXiv preprint arXiv:1704.05519. 2017.

    Google Scholar 

  13. Perlich C, Dalessandro B, Raeder T, Stitelman O, Provost F. Machine learning for targeted display advertising: transfer learning in action. Mach Learn. 2014;95:103–27.

    Article  Google Scholar 

  14. Chen M, Hao Y, Hwang K, Wang L, Wang L. Disease prediction by machine learning over big data from healthcare communities. IEEE Access. 2017;5:8869–79.

    Article  Google Scholar 

  15. Koch M. Artificial intelligence is becoming natural. Cell. 2018;173:531–3.

    Article  CAS  PubMed  Google Scholar 

  16. Andreu-Perez J, Poon CC, Merrifield RD, Wong ST, Yang G-Z. Big data for health. IEEE J Biomed Health Inform. 2015;19:1193–208.

    Article  PubMed  Google Scholar 

  17. Seera M, Lim CP. A hybrid intelligent system for medical data classification. Expert Syst Appl. 2014;41:2239–49.

    Article  Google Scholar 

  18. Tucker PE, Cohen PA, Bulsara MK, Acton J. Fatigue and training of obstetrics and gynaecology trainees in Australia and New Zealand. Aust N Z J Obstet Gynaecol. 2017;57:502–7.

    Article  PubMed  Google Scholar 

  19. Wang J, Yang X, Cai H, Tan W, Jin C, Li L. Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci Rep. 2016;6:27327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jha S, Topol EJ. Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA. 2016;316:2353–4.

    Article  PubMed  Google Scholar 

  21. Obermeyer Z, Emanuel EJ. Predicting the future—big data, machine learning, and clinical medicine. N Engl J Med. 2016;375:1216.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Z, Shah AD, Tate AR, Denaxas S, Shawe-Taylor J, Hemingway H. Extracting diagnoses and investigation results from unstructured text in electronic health records by semi-supervised machine learning. PLoS One. 2012;7:e30412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet. 2012;13:395.

    Article  CAS  PubMed  Google Scholar 

  25. Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep. 2016;6:26094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bertsimas D, Kallus N, Weinstein AM, Zhuo YD. Personalized diabetes management using electronic medical records. Diabetes Care. 2017;40:210–7.

    Article  PubMed  Google Scholar 

  27. Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, Liu PJ, Liu X, Marcus J, Sun M. Scalable and accurate deep learning with electronic health records. npj Digital Med. 2018;1:18.

    Article  Google Scholar 

  28. Castaneda C, Nalley K, Mannion C, Bhattacharyya P, Blake P, Pecora A, Goy A, Suh KS. Clinical decision support systems for improving diagnostic accuracy and achieving precision medicine. J Clin Bioinform. 2015;5:4.

    Article  Google Scholar 

  29. Johnson AE, Ghassemi MM, Nemati S, Niehaus KE, Clifton DA, Clifford GD. Machine learning and decision support in critical care. Proc IEEE. 2016;104:444–66.

    Article  Google Scholar 

  30. Bertsimas D, Kung J, Trichakis N, Wojciechowski D, Vagefi PA. Accept or decline? An analytics-based decision tool for kidney offer evaluation. Transplantation. 2017;101:2898–904.

    Article  PubMed  Google Scholar 

  31. Bertsimas D, Silberholz J, Trikalinos T. Optimal healthcare decision making under multiple mathematical models: application in prostate cancer screening. Health Care Manag Sci. 2018;21:105–18.

    Article  PubMed  Google Scholar 

  32. Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 2015;20:318–31.

    Article  PubMed  Google Scholar 

  33. Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol Informat. 2016;35:3–14.

    Article  CAS  Google Scholar 

  34. Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017;22(11):1680–5.

    Google Scholar 

  35. Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241–50.

    Google Scholar 

  36. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS. Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8:68.

    Article  CAS  PubMed  Google Scholar 

  37. Peterson TA, Doughty E, Kann MG. Towards precision medicine: advances in computational approaches for the analysis of human variants. J Mol Biol. 2013;425:4047–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rost B, Radivojac P, Bromberg Y. Protein function in precision medicine: deep understanding with machine learning. FEBS Lett. 2016;590:2327–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee S-I, Celik S, Logsdon BA, Lundberg SM, Martins TJ, Oehler VG, Estey EH, Miller CP, Chien S, Dai J. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat Commun. 2018;9:42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Potti A, Dressman HK, Bild A, Riedel RF, Chan G, Sayer R, Cragun J, Cottrill H, Kelley MJ, Petersen R. Genomic signatures to guide the use of chemotherapeutics. Nat Med. 2006;12:1294.

    Article  CAS  PubMed  Google Scholar 

  41. Narula S, Shameer K, Omar AMS, Dudley JT, Sengupta PP. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68:2287–95.

    Article  PubMed  Google Scholar 

  42. Leclerc S, Smistad E, Pedrosa J, Østvik A, Cervenansky F, Espinosa F, Espeland T, Berg EA, Jodoin PM, Grenier T, Lartizien C. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans Med Imaging. 2019;38(9):2198–210.

    Google Scholar 

  43. Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. npj Digital Med. 2018;1:6.

    Article  Google Scholar 

  44. Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, Gall W, Dudley JT. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging. 2016;9(6):e004330.

    Google Scholar 

  45. Avendi M, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal. 2016;30:108–19.

    Article  CAS  PubMed  Google Scholar 

  46. Bramer M. Avoiding overfitting of decision trees. Principles of data mining. London: Springer. 2007:119–34.

    Google Scholar 

  47. Austin PC, Tu JV, Ho JE, Levy D, Lee DS. Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. J Clin Epidemiol. 2013;66:398–407.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Deng M, Wang C, Tang M, Zheng T. Extracting cardiac dynamics within ECG signal for human identification and cardiovascular diseases classification. Neural Netw. 2018;100:70–83.

    Article  PubMed  Google Scholar 

  49. Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, Pellikka PA, Enriquez-Sarano M, Noseworthy PA, Munger TM. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nat Med. 2019;25:70.

    Article  CAS  PubMed  Google Scholar 

  50. Baloglu UB, Talo M, Yildirim O, San Tan R, Acharya UR. Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recogn Lett. 2019;122:23–30.

    Article  Google Scholar 

  51. Ceylan R, Özbay Y. Comparison of FCM, PCA and WT techniques for classification ECG arrhythmias using artificial neural network. Expert Syst Appl. 2007;33:286–95.

    Article  Google Scholar 

  52. Asl BM, Setarehdan SK, Mohebbi M. Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif Intell Med. 2008;44:51–64.

    Article  PubMed  Google Scholar 

  53. Joshi AJ, Chandran S, Jayaraman VK, Kulkarni BD. Hybrid svm for multiclass arrhythmia classification. Bioinformatics and Biomedicine, 2009. BIBM'09. IEEE International Conference on. 2009. p. 287–90.

    Google Scholar 

  54. Yeh Y-C, Wang W-J, Chiou CW. Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals. Measurement. 2009;42:778–89.

    Article  Google Scholar 

  55. Moavenian M, Khorrami H. A qualitative comparison of artificial neural networks and support vector machines in ECG arrhythmias classification. Expert Syst Appl. 2010;37:3088–93.

    Article  Google Scholar 

  56. Özçift A. Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis. Comput Biol Med. 2011;41:265–71.

    Article  PubMed  Google Scholar 

  57. Sree SV, Ghista DN, Ng K-H. Cardiac arrhythmia diagnosis by HRV signal processing using principal component analysis. J Mech Med Biol. 2012;12:1240032.

    Article  Google Scholar 

  58. Li Q, Rajagopalan C, Clifford GD. Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans Biomed Eng. 2014;61:1607–13.

    Article  PubMed  Google Scholar 

  59. Colloca R, Johnson AE, Mainardi L, Clifford GD. A support vector machine approach for reliable detection of atrial fibrillation events. Comput Cardiol Conf (CinC). 2013;2013:1047–50.

    Google Scholar 

  60. Zhang XS, Zhu YS, Thakor NV, Wang ZZ. Detecting ventricular tachycardia and fibrillation by complexity measure. IEEE Trans Biomed Eng. 1999;46:548–55.

    Article  CAS  PubMed  Google Scholar 

  61. Kuo S. Computer detection of ventricular fibrillation. Proc. of Computers in Cardiology, IEEE Comupter Society. 1978. p. 347–9.

    Google Scholar 

  62. Li Q, Mark RG, Clifford GD. Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a kalman filter. Physiol Meas. 2007;29:15.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, Ng AY. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25:65–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Teijeiro T, García CA, Castro D, Félix P. Arrhythmia classification from the abductive interpretation of short single-lead ecg records. Comput Cardiol. 2017;44:1–4.

    Google Scholar 

  65. Kropf M, Hayn D, Morris D, Radhakrishnan A-K, Belyavskiy E, Frydas A, Pieske-Kraigher E, Pieske B, Schreier G. Cardiac anomaly detection based on time and frequency domain features using tree-based classifiers. Physiol Meas. 2018;39:114001.

    Article  CAS  PubMed  Google Scholar 

  66. Shao M, Bin G, Wu S, Bin G, Huang J, Zhou Z. Detection of atrial fibrillation from ECG recordings using decision tree ensemble with multi-level features. Physiol Meas. 2018;39:094008.

    Article  PubMed  Google Scholar 

  67. Smisek R, Hejc J, Ronzhina M, Nemcova A, Marsanova L, Kolarova J, Smital L, Vitek M. Multi-stage SVM approach for cardiac arrhythmias detection in short single-lead ECG recorded by a wearable device. Physiol Meas. 2018;39:094003.

    Article  PubMed  Google Scholar 

  68. Gliner V, Yaniv Y. An svm approach for identifying atrial fibrillation. Physiol Meas. 2018;39:094007.

    Article  PubMed  Google Scholar 

  69. Plesinger F, Nejedly P, Viscor I, Halamek J, Jurak P. Parallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECG. Physiol Meas. 2018;39:094002.

    Article  PubMed  Google Scholar 

  70. Warrick PA, Homsi MN. Ensembling convolutional and long short-term memory networks for electrocardiogram arrhythmia detection. Physiol Meas. 2018;39:114002.

    Article  PubMed  Google Scholar 

  71. Xiong Z, Nash MP, Cheng E, Fedorov VV, Stiles MK, Zhao J. Ecg signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network. Physiol Meas. 2018;39:094006.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sodmann P, Vollmer M, Nath N, Kaderali L. A convolutional neural network for ECG annotation as the basis for classification of cardiac rhythms. Physiol Meas. 2018;39:104005.

    Article  PubMed  Google Scholar 

  73. Zubair M, Kim J, Yoon C. An automated ECG beat classification system using convolutional neural networks. IT Convergence and Security (ICITCS), 2016 6th International Conference on. 2016. p. 1–5.

    Google Scholar 

  74. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, San Tan R. A deep convolutional neural network model to classify heartbeats. Comput Biol Med. 2017;89:389–96.

    Article  PubMed  Google Scholar 

  75. Isin A, Ozdalili S. Cardiac arrhythmia detection using deep learning. Proc Comput Sci. 2017;120:268–75.

    Article  Google Scholar 

  76. Ong MEH, Ng CHL, Goh K, Liu N, Koh ZX, Shahidah N, Zhang TT, Fook-Chong S, Lin Z. Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score. Crit Care. 2012;16:R108.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Churpek MM, Yuen TC, Winslow C, Meltzer DO, Kattan MW, Edelson DP. Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit Care Med. 2016;44:368.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Drew BJ, Harris P, Zègre-Hemsey JK, Mammone T, Schindler D, Salas-Boni R, Bai Y, Tinoco A, Ding Q, Hu X. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS One. 2014;9:e110274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Li Q, Clifford GD. Signal quality and data fusion for false alarm reduction in the intensive care unit. J Electrocardiol. 2012;45:596–603.

    Article  PubMed  Google Scholar 

  80. Plesinger F, Klimes P, Halamek J, Jurak P. Taming of the monitors: reducing false alarms in intensive care units. Physiol Meas. 2016;37:1313–25.

    Article  CAS  PubMed  Google Scholar 

  81. Kalidas V, Tamil LS. Cardiac arrhythmia classification using multi-modal signal analysis. Physiol Meas. 2016;37:1253–72.

    Article  CAS  PubMed  Google Scholar 

  82. Eerikainen LM, Vanschoren J, Rooijakkers MJ, Vullings R, Aarts RM. Reduction of false arrhythmia alarms using signal selection and machine learning. Physiol Meas. 2016;37:1204–16.

    Article  PubMed  Google Scholar 

  83. Au-Yeung WM, Sahani AK, Isselbacher EM, Armoundas AA. Reduction of false alarms in the intensive care unit using an optimized machine learning based approach. NPJ Digit Med. 2019;2:86.

    Google Scholar 

  84. Burke LE, Ma J, Azar KM, Bennett GG, Peterson ED, Zheng Y, Riley W, Stephens J, Shah SH, Suffoletto B. Current science on consumer use of mobile health for cardiovascular disease prevention: a scientific statement from the american heart association. Circulation. 2015;132:1157–213.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Piette JD, List J, Rana GK, Townsend W, Striplin D, Heisler M. Mobile health devices as tools for worldwide cardiovascular risk reduction and disease management. Circulation. 2015;132:2012–27.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jin Z, Sun Y, Cheng AC. Predicting cardiovascular disease from real-time electrocardiographic monitoring: An adaptive machine learning approach on a cell phone. Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. 2009. p. 6889–6892.

    Google Scholar 

  87. Ortín S, Soriano MC, Alfaras M, Mirasso CR. Automated real-time method for ventricular heartbeat classification. Comput Methods Prog Biomed. 2019;169:1–8.

    Article  Google Scholar 

  88. Zhu T, Pimentel MA, Clifford GD, Clifton DA. Unsupervised bayesian inference to fuse biosignal sensory estimates for personalising care. IEEE J Biomed Health Inform. 2018;23(1):47–58.

    Google Scholar 

  89. Satija U, Ramkumar B, Manikandan MS. Automated ECG noise detection and classification system for unsupervised healthcare monitoring. IEEE J Biomed Health Inform. 2018;22:722–32.

    Article  PubMed  Google Scholar 

  90. Shashikumar SP, Shah AJ, Li Q, Clifford GD, Nemati S. A deep learning approach to monitoring and detecting atrial fibrillation using wearable technology. Biomedical & Health Informatics (BHI), 2017 IEEE EMBS International Conference on. 2017. p. 141–4.

    Google Scholar 

  91. Lahdenoja O, Hurnanen T, Iftikhar Z, Nieminen S, Knuutila T, Saraste A, Kiviniemi T, Vasankari T, Airaksinen J, Pankaala M. Atrial fibrillation detection via accelerometer and gyroscope of a smartphone. IEEE J Health Biomed Informat. 2017;99:1–12.

    Google Scholar 

  92. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, Bonow RO, Huang C-C, Deo RC. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2014:CIRCULATIONAHA. 114.010637.

    Google Scholar 

  93. Juhola M, Joutsijoki H, Penttinen K, Aalto-Setälä K. Detection of genetic cardiac diseases by ca 2+ transient profiles using machine learning methods. Sci Rep. 2018;8:9355.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bellot A, Van der Schaar M. A hierarchical bayesian model for personalized survival predictions. IEEE J Biomed Health Inform. 2018;

    Google Scholar 

  95. Gerds TA, Kattan MW, Schumacher M, Yu C. Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring. Stat Med. 2013;32:2173–84.

    Article  PubMed  Google Scholar 

  96. Mogensen UB, Ishwaran H, Gerds TA. Evaluating random forests for survival analysis using prediction error curves. J Stat Softw. 2012;50:1.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, Andreini D, Budoff MJ, Cademartiri F, Callister TQ. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2016;38:500–7.

    PubMed Central  Google Scholar 

  98. Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017;12:e0174944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2:158.

    Article  PubMed  Google Scholar 

  100. Wang J, Ding H, Bidgoli FA, Zhou B, Iribarren C, Molloi S, Baldi P. Detecting cardiovascular disease from mammograms with deep learning. IEEE Trans Med Imaging. 2017;36:1172–81.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Choi E, Schuetz A, Stewart WF, Sun J. Using recurrent neural network models for early detection of heart failure onset. J Am Med Inform Assoc. 2016;24:361–70.

    Article  PubMed Central  Google Scholar 

  102. Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan FM, Xue Z, Palaniappan K, Singh RK, Antani SK. Automatic tuberculosis screening using chest radiographs. IEEE Trans Med Imaging. 2014;33:233–45.

    Article  PubMed  Google Scholar 

  103. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: a large-scale hierarchical image database. Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. 2009. p. 248–55.

    Google Scholar 

  104. Bar Y, Diamant I, Wolf L, Greenspan H. Deep learning with non-medical training used for chest pathology identification. Medical Imaging 2015: Computer-Aided Diagnosis. 2015;9414:94140V.

    Google Scholar 

  105. Shin H-C, Roberts K, Lu L, Demner-Fushman D, Yao J, Summers RM. Learning to read chest x-rays: recurrent neural cascade model for automated image annotation. Proc IEEE Conf Comput Vis Pattern Recognit. 2016:2497–506.

    Google Scholar 

  106. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225. 2017.

    Google Scholar 

  107. Hua KL, Hsu CH, Hidayati SC, Cheng WH, Chen YJ. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther. 2015;8:2015–22.

    Google Scholar 

  108. González G, Ash SY, Vegas-Sánchez-Ferrero G, Onieva Onieva J, Rahaghi FN, Ross JC, Díaz A, San José Estépar R, Washko GR. Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med. 2018;197:193–203.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tajbakhsh N, Suzuki K. Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification: MTANNs vs. CNNs. Pattern Recogn. 2017;63:476–86.

    Article  Google Scholar 

  110. Amaral JL, Lopes AJ, Faria AC, Melo PL. Machine learning algorithms and forced oscillation measurements to categorise the airway obstruction severity in chronic obstructive pulmonary disease. Comput Methods Prog Biomed. 2015;118:186–97.

    Article  Google Scholar 

  111. Amaral JL, Lopes AJ, Veiga J, Faria AC, Melo PL. High-accuracy detection of airway obstruction in asthma using machine learning algorithms and forced oscillation measurements. Comput Methods Prog Biomed. 2017;144:113–25.

    Article  Google Scholar 

  112. Cai Z, Xu D, Zhang Q, Zhang J, Ngai S-M, Shao J. Classification of lung cancer using ensemble-based feature selection and machine learning methods. Mol BioSyst. 2015;11:791–800.

    Article  CAS  PubMed  Google Scholar 

  113. Kim SY, Diggans J, Pankratz D, Huang J, Pagan M, Sindy N, Tom E, Anderson J, Choi Y, Lynch DA. Classification of usual interstitial pneumonia in patients with interstitial lung disease: assessment of a machine learning approach using high-dimensional transcriptional data. Lancet Respir Med. 2015;3:473–82.

    Article  CAS  PubMed  Google Scholar 

  114. Yang Y, Niehaus KE, Walker TM, Iqbal Z, Walker AS, Wilson DJ, Peto TE, Crook DW, Smith EG, Zhu T. Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data. Bioinformatics. 2017;34:1666–71.

    Article  PubMed Central  CAS  Google Scholar 

  115. Inoue K, Yoshioka M, Yagi N, Nagami S, Oku Y. Using machine learning and a combination of respiratory flow, laryngeal motion, and swallowing sounds to classify safe and unsafe swallowing. 2018;65(11):2529–41.

    Google Scholar 

  116. Palaniappan R, Sundaraj K, Sundaraj S. A comparative study of the svm and k-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals. BMC Bioinform. 2014;15:223.

    Article  Google Scholar 

  117. Amoh J, Odame K. Deep neural networks for identifying cough sounds. IEEE Trans Biomed Circ Syst. 2016;10:1003–11.

    Article  Google Scholar 

  118. Aykanat M, Kılıç Ö, Kurt B, Saryal S. Classification of lung sounds using convolutional neural networks. EURASIP J Image Video Process. 2017;2017:65.

    Article  Google Scholar 

  119. Chamberlain D, Kodgule R, Ganelin D, Miglani V, Fletcher RR. Application of semi-supervised deep learning to lung sound analysis. Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the. 2016. p. 804–7.

    Google Scholar 

  120. Finkelstein J. Machine learning approaches to personalize early prediction of asthma exacerbations. Ann N Y Acad Sci. 2017;1387:153–65.

    Article  PubMed  Google Scholar 

  121. Delahanty RJ, Kaufman D, Jones SS. Development and evaluation of an automated machine learning algorithm for in-hospital mortality risk adjustment among critical care patients. Crit Care Med. 2018;46:e481–8.

    Article  PubMed  Google Scholar 

  122. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25:954.

    Article  CAS  PubMed  Google Scholar 

  123. Lu MT, Ivanov A, Mayrhofer T, Hosny A, Aerts HJ, Hoffmann U. Deep learning to assess long-term mortality from chest radiographs. JAMA Netw Open. 2019;2:–e197416.

    Google Scholar 

  124. Hall WJ, Chapman MV, Lee KM, Merino YM, Thomas TW, Payne BK, Eng E, Day SH, Coyne-Beasley T. Implicit racial/ethnic bias among health care professionals and its influence on health care outcomes: a systematic review. Am J Public Health. 2015;105:e60–76.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sabin DJA, Nosek DBA, Greenwald DAG, Rivara DFP. Physicians’ implicit and explicit attitudes about race by md race, ethnicity, and gender. J Health Care Poor Underserved. 2009;20:896.

    Article  PubMed  PubMed Central  Google Scholar 

  126. El Emam K, Dankar FK, Vaillancourt R, Roffey T, Lysyk M. Evaluating the risk of re-identification of patients from hospital prescription records. Can J Hosp Pharm. 2009;62:307.

    PubMed  PubMed Central  Google Scholar 

  127. Sana F, Isselbacher EM, Singh JP, Heist EK, Pathik B, Armoundas AA. Wearable Devices for Ambulatory Cardiac Monitoring: JACC State-of-the-Art Review.Journal of the American College of Cardiology. 2020;75(13):1582–92.

    Google Scholar 

  128. Sevakula, RK WTM Au-Yeung, JP Singh, EK Heist, EM Isselbacher, and AA Armoundas. State-of-the-Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System. Journal of the American Heart Association 9. 2020;e013924, JAHA.119.013924.

    Google Scholar 

  129. Bazoukis G, Stavrakis S, Zhou J, Bollepalli SC, Tse G, Zhang Q, Singh JP, Armoundas AA. Machine learning versus conventional clinical methods in guiding management of heart failure patients-a systematic review. Heart failure reviews. 2020; https://doi.org/10.1007/s10741-020-10007-3.

  130. Kass-Hout TA, Stevens LM, Hall JL. American heart association precision medicine platform. Circulation. 2018;137:647–9.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Bertsimas D, Dunn J. Optimal classification trees. Mach Learn. 2017;106:1039–82.

    Article  Google Scholar 

  132. Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA. 2017;318:517–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant-in-aid (#15GRNT23070001) from the American Heart Association (AHA); the Ricbac Foundation; NIH grants 1 R01 HL135335-01, 1 R21 HL137870-01, and 1 R21EB026164-01; and a Founders Affiliate Postdoctoral Fellowship (#19POST34450149) from the AHA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis A. Armoundas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Au-Yeung, WT.M., Sevakula, R.K., Singh, J.P., Heist, E.K., Isselbacher, E.M., Armoundas, A.A. (2021). State of the Art in Artificial Intelligence and Machine Learning Techniques for Improving Patient Outcomes Pertaining to the Cardiovascular and Respiratory Systems. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics