Skip to main content

Frequency and Phase Domains Methods for Mechanisms of Fibrillation

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy
  • 656 Accesses

Abstract

Cardiac fibrillation is a leading cause of mortality and morbidity, and despite major research efforts, its mechanisms are still poorly understood. The challenges in understanding the complex patterns of excitation during fibrillation stem mostly from its nonlinear and multifactorial dynamics, but experimental studies utilizing high-resolution optical mapping have demonstrated that in some cases, the complex fibrillation is driven by relatively well-organized reentrant patterns, whose localization was made more accurate by frequency and phase domains processing approaches. The chapter first introduces the concepts of the dominant frequency and the singularity points in the phase space and how they relate to fibrillation and its reentrant activity. It then demonstrates experimental and clinical cardiac mapping cases to illustrate insight gained by those concepts in support of the idea that rotors play a major role in driving fibrillation. Finally, the application of the frequency and phase approaches in noninvasive mapping of atrial and ventricular fibrillation in patients is demonstrated. The processing methods presented in this chapter should enhance any cardiac mapping and possibly improve the understanding of fibrillation and the guidance for its therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calvo D, Filgueiras-Rama D, Jalife J. Mechanisms and drug development in atrial fibrillation. Pharmacol Rev. 2018;70(3):505–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pedersen CT, Kay GN, Kalman J, Borggrefe M, Della-Bella P, Dickfeld T, et al. EHRA/HRS/APHRS expert consensus on ventricular arrhythmias. Europace. 2014;16(9):1257–83.

    Article  PubMed  Google Scholar 

  3. Moe GK, Abildskov JA. Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am Heart J. 1959;58(1):59–70.

    Article  CAS  PubMed  Google Scholar 

  4. Lewis T. Lectures on the heart. New York: Paul B Hoeber; 1915.

    Google Scholar 

  5. Jalife J, Berenfeld O, Mansour M. Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovasc Res. 2002;54(2):204–16.

    Article  CAS  PubMed  Google Scholar 

  6. Mandapati R, Skanes A, Chen J, Berenfeld O, Jalife J. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation. 2000;101(2):194–9.

    Article  CAS  PubMed  Google Scholar 

  7. Nash MP, Mourad A, Clayton RH, Sutton PM, Bradley CP, Hayward M, et al. Evidence for multiple mechanisms in human ventricular fibrillation. Circulation. 2006;114(6):536–42.

    Article  PubMed  Google Scholar 

  8. Mansour M, Mandapati R, Berenfeld O, Chen J, Samie FH, Jalife J. Left-to-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart. Circulation. 2001;103(21):2631–6.

    Article  CAS  PubMed  Google Scholar 

  9. Zaitsev AV, Guha PK, Sarmast F, Kolli A, Berenfeld O, Pertsov AM, et al. Wavebreak formation during ventricular fibrillation in the isolated, regionally ischemic pig heart. Circ Res. 2003;92(5):546–53.

    Article  CAS  PubMed  Google Scholar 

  10. Berenfeld O. Quantifying activation frequency in atrial fibrillation to establish underlying mechanisms and ablation guidance. Heart Rhythm. 2007;4(9):1225–34.

    Article  PubMed  Google Scholar 

  11. Berenfeld O, Oral H. The quest for rotors in atrial fibrillation: different nets catch different fishes. Heart Rhythm. 2012;9(9):1440–1.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Berenfeld O, Ennis S, Hwang E, Hooven B, Grzeda K, Mironov S, et al. Time- and frequency-domain analyses of atrial fibrillation activation rate: the optical mapping reference. Heart Rhythm. 2011;8(11):1758–65.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guillem MS, Climent AM, Rodrigo M, Fernández-Avilés F, Atienza F, Berenfeld O. Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovasc Res. 2016;109(4):480–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Narayan SM, Jalife J. CrossTalk proposal: rotors have been demonstrated to drive human atrial fibrillation. J Physiol Lond. 2014;592(15):3163–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allessie M, de Groot N. CrossTalk opposing view: rotors have not been demonstrated to be the drivers of atrial fibrillation. J Physiol Lond. 2014;592(15):3167–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Atienza F, Almendral J, Jalife J, Zlochiver S, Ploutz-Snyder R, Torrecilla EG, et al. Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm. 2009;6(1):33–40.

    Article  PubMed  Google Scholar 

  17. Atienza F, Almendral J, Ormaetxe JM, Moya A, Martínez-Alday JD, Hernández-Madrid A, et al. Comparison of radiofrequency catheter ablation of drivers and circumferential pulmonary vein isolation in atrial fibrillation: a noninferiority randomized multicenter RADAR-AF trial. J Am Coll Cardiol. 2014;64(23):2455–67.

    Article  PubMed  Google Scholar 

  18. Calvo D, Rubín J, Pérez D, Morís C. Ablation of rotor domains effectively modulates dynamics of human: long-standing persistent atrial fibrillation. Circ Arrhythm Electrophysiol. 2017;10(12):e005740.

    Article  PubMed  Google Scholar 

  19. Gray RA, Pertsov AM, Jalife J. Spatial and temporal organization during cardiac fibrillation. Nature. 1998;392(6671):75–8.

    Article  CAS  PubMed  Google Scholar 

  20. Bray M-A, Wikswo JP. Considerations in phase plane analysis for nonstationary reentrant cardiac behavior. Phys Rev E Stat Nonlinear Soft Matter Phys. 2002;65(5 Pt 1):051902.

    Article  CAS  Google Scholar 

  21. Chen J, Mandapati R, Berenfeld O, Skanes AC, Gray RA, Jalife J. Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart. Cardiovasc Res. 2000;48(2):220–32.

    Article  CAS  PubMed  Google Scholar 

  22. Fraser AM, Swinney HL. Independent coordinates for strange attractors from mutual information. Phys Rev A. 1986;33(2):1134–40.

    Article  CAS  Google Scholar 

  23. Filgueiras-Rama D, Price NF, Martins RP, Yamazaki M, Avula UMR, Kaur K, et al. Long-term frequency gradients during persistent atrial fibrillation in sheep are associated with stable sources in the left atrium. Circ Arrhythm Electrophysiol. 2012;5(6):1160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Winfree AT. Electrical instability in cardiac muscle: phase singularities and rotors. J Theor Biol. 1989;138(3):353–405.

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka K, Zlochiver S, Vikstrom KL, Yamazaki M, Moreno J, Klos M, et al. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ Res. 2007;101(8):839–47.

    Article  CAS  PubMed  Google Scholar 

  26. Atienza F, Almendral J, Moreno J, Vaidyanathan R, Talkachou A, Kalifa J, et al. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation. 2006;114(23):2434–42.

    Article  CAS  PubMed  Google Scholar 

  27. Sarmast F, Kolli A, Zaitsev A, Parisian K, Dhamoon AS, Guha PK, et al. Cholinergic atrial fibrillation: I(K,ACh) gradients determine unequal left/right atrial frequencies and rotor dynamics. Cardiovasc Res. 2003;59(4):863–73.

    Article  CAS  PubMed  Google Scholar 

  28. Berenfeld O, Zaitsev AV, Mironov SF, Pertsov AM, Jalife J. Frequency-dependent breakdown of wave propagation into fibrillatory conduction across the pectinate muscle network in the isolated sheep right atrium. Circ Res. 2002;90(11):1173–80.

    Article  CAS  PubMed  Google Scholar 

  29. Zlochiver S, Yamazaki M, Kalifa J, Berenfeld O. Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm. 2008;5(6):846–54.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Narayan SM, Shivkumar K, Krummen DE, Miller JM, Rappel W-J. Panoramic electrophysiological mapping but not electrogram morphology identifies stable sources for human atrial fibrillation: stable atrial fibrillation rotors and focal sources relate poorly to fractionated electrograms. Circ Arrhythm Electrophysiol. 2013;6(1):58–67.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature. 1992;355(6358):349–51.

    Article  CAS  PubMed  Google Scholar 

  32. Calvo D, Rubín J, Pérez D, Jalife J. Spectral analysis of electrograms in a substrate modified by radiofrequency ablation reveals similarities between organized and disorganized atrial rhythms. Heart Rhythm. 2014;11(12):2306–9.

    Article  PubMed  Google Scholar 

  33. Yoshida K, Chugh A, Ulfarsson M, Good E, Kuhne M, Crawford T, et al. Relationship between the spectral characteristics of atrial fibrillation and atrial tachycardias that occur after catheter ablation of atrial fibrillation. Heart Rhythm. 2009;6(1):11–7.

    Article  PubMed  Google Scholar 

  34. Guillem MS, Climent AM, Castells F, Husser D, Millet J, Arya A, et al. Noninvasive mapping of human atrial fibrillation. J Cardiovasc Electrophysiol. 2009;20(5):507–13.

    Article  PubMed  Google Scholar 

  35. Cuculich PS, Wang Y, Lindsay BD, Faddis MN, Schuessler RB, Damiano RJ, et al. Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation. 2010;122(14):1364–72.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Haissaguerre M, Hocini M, Denis A, Shah AJ, Komatsu Y, Yamashita S, et al. Driver domains in persistent atrial fibrillation. Circulation. 2014;130(7):530–8.

    Article  PubMed  Google Scholar 

  37. Rodrigo M, Guillem MS, Climent AM, Pedrón-Torrecilla J, Liberos A, Millet J, et al. Body surface localization of left and right atrial high-frequency rotors in atrial fibrillation patients: a clinical-computational study. Heart Rhythm. 2014;11(9):1584–91.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pertsov AM, Wellner M, Vinson M, Jalife J. Topological constraint on scroll wave pinning. Phys Rev Lett. 2000;84(12):2738–41.

    Article  CAS  PubMed  Google Scholar 

  39. Jalife J, Berenfeld O. Molecular mechanisms and global dynamics of fibrillation: an integrative approach to the underlying basis of vortex-like reentry. J Theor Biol. 2004;230(4):475–87.

    Article  CAS  PubMed  Google Scholar 

  40. Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JM, et al. Mechanisms of cardiac fibrillation. Science. 1995;270(5239):1222–3; author reply 1224–1225.

    Article  CAS  PubMed  Google Scholar 

  41. Samie FH, Berenfeld O, Anumonwo J, Mironov SF, Udassi S, Beaumont J, et al. Rectification of the background potassium current: a determinant of rotor dynamics in ventricular fibrillation. Circ Res. 2001;89(12):1216–23.

    Article  CAS  PubMed  Google Scholar 

  42. Samie FH, Mandapati R, Gray RA, Watanabe Y, Zuur C, Beaumont J, et al. A mechanism of transition from ventricular fibrillation to tachycardia : effect of calcium channel blockade on the dynamics of rotating waves. Circ Res. 2000;86(6):684–91.

    Article  CAS  PubMed  Google Scholar 

  43. Zaitsev AV, Berenfeld O, Mironov SF, Jalife J, Pertsov AM. Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ Res. 2000;86(4):408–17.

    Article  CAS  PubMed  Google Scholar 

  44. Chen J, Mandapati R, Berenfeld O, Skanes AC, Jalife J. High-frequency periodic sources underlie ventricular fibrillation in the isolated rabbit heart. Circ Res. 2000;86(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  45. Guillem MS, Climent AM, Millet J, Arenal A, Fernández-Avilés F, Jalife J, et al. Noninvasive localization of maximal frequency sites of atrial fibrillation by body surface potential mapping. Circ Arrhythm Electrophysiol. 2013;6(2):294–301.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Calvo D, Atienza F, Saiz J, Martínez L, Ávila P, Rubín J, et al. Ventricular tachycardia and early fibrillation in patients with brugada syndrome and ischemic cardiomyopathy show predictable frequency-phase properties on the precordial ECG consistent with the respective arrhythmogenic substrate. Circ Arrhythm Electrophysiol. 2015;8(5):1133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Berenfeld O. Computational approaches for accurate rotor localization in the human atria. In: Zipes DP, Jalife J, Stevenson WG, editors. Cardiac electrophysiology – from cell to bedside, chapter 35. 7th ed. Philadelphia: Elsevier; 2018. p. 335–44.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Berenfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calvo, D., Berenfeld, O. (2021). Frequency and Phase Domains Methods for Mechanisms of Fibrillation. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics