Skip to main content

The Role of Electroporation

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy

Abstract

A therapeutic application of electrical current to cardiac tissue for reviving the normal function (defibrillation, pacing) or for ablating pathological conduction pathways inevitably has to take into account the phenomenon of electroporation, the electric-field-induced rupture of sarcolemma that is usually evidenced by a drastic unselective increase in cell membrane permeability to small ions and large molecules. This chapter describes some aspects of this phenomenon in relation to cardiac therapy and research. Particularly, it provides evidences that (1) electroporation of the heart tissue can occur during clinically relevant intensities of the external electrical field and (2) electroporation can affect the outcome of defibrillation therapy, being both pro- and antiarrhythmic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prevost J-L. Sur quel ques effets des dechanges electriques sur le coer mammifres. C R Seances Acad Sci. 1899;129:1267.

    Google Scholar 

  2. Vulpian A. Note sur les effets de la faradisation directe des ventricules du coeur le chien. Arch Physiol. 1874;1:975.

    Google Scholar 

  3. Ludwig C, Hoffa M. Einige neue versuche uber herzbewegung. Zeitschrift Rationelle Medizin. 1850;9:107–44.

    Google Scholar 

  4. Hooker DR, Kouwenhoven WB, Langworthy OR. The effect of alternating electrical currents on the heart. Am J Physiol Content. 1933;103(2):444–54.

    Article  Google Scholar 

  5. Beck CS, Pritchard WH, Feil HS. Ventricular fibrillation of long duration abolished by electric shock. JAMA. 1947;135(15):985–6.

    Article  CAS  Google Scholar 

  6. Kodama I, Shibata N, Sakuma I, Mitsui K, Iida M, Suzuki R, et al. Aftereffects of high-intensity DC stimulation on the electromechanical performance of ventricular muscle. Am J Physiol Circ Physiol. 1994;267(1):H248–58.

    Article  CAS  Google Scholar 

  7. Krauthamer V, Jones JL. Calcium dynamics in cultured heart cells exposed to defibrillator-type electric shocks. Life Sci. 1997;60(22):1977–85.

    Article  CAS  PubMed  Google Scholar 

  8. Fast VG, Cheek ER. Optical mapping of arrhythmias induced by strong electrical shocks in myocyte cultures. Circ Res. 2002;90(6):664–70.

    Article  CAS  PubMed  Google Scholar 

  9. Gurvich NL. The main principles of cardiac defibrillation. Moscow Med. 1975.

    Google Scholar 

  10. Osswald S, Trouton TG, O’Nunain SS, Holden HB, Ruskin JN, Garan H. Relation between shock-related myocardial injury and defibrillation efficacy of monophasic and biphasic shocks in a canine model. Circulation. 1994;90(5):2501–9.

    Article  CAS  PubMed  Google Scholar 

  11. Gurvich NL, Yuniev GS. Restoration of regular rhythm in the mammalian fibrillating heart. Byull Eksper Biol Med. 1939;8:55–8.

    Google Scholar 

  12. Gurvich NL, Yuniev GS. Restoration of regular rhythm in the mammalian fibrillating heart. Am Rev Sov Med. 1946;3:236–9.

    CAS  PubMed  Google Scholar 

  13. Gurvich NL, Tabak VI, Bogushevich MS, Venin IV, Makarychev VA. Biphasic impulse heart defibrillation under experimental and clinical conditions. Kardiologiia. 1971;11(8):126–30.

    CAS  PubMed  Google Scholar 

  14. Negovsky VA, Gurvich NL, Tabak VY, Bogushevich MS. The nature of electric defibrillation of the heart. Resuscitation. 1973;2(4):255–9.

    Article  CAS  PubMed  Google Scholar 

  15. Fabiato A, Coumel P, Gourgon R, Saumont R. The threshold of synchronous response of the myocardial fibers. Application to the experimental comparison of the efficacy of different forms of electroshock defibrillation. Arch Mal Coeur Vaiss. 1967;60(4):527–44.

    CAS  PubMed  Google Scholar 

  16. Chen PS, Shibata N, Dixon EG, Martin RO, Ideker RE. Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation. 1986;73(5):1022–8.

    Article  CAS  PubMed  Google Scholar 

  17. Dillon SM, Kwaku KF. Progressive depolarization: a unified hypothesis for defibrillation and fibrillation induction by shocks. J Cardiovasc Electrophysiol. 1998;9(5):529–52.

    Article  CAS  PubMed  Google Scholar 

  18. Efimov IR, Gray RA, Roth BJ. Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol. 2000;11(3):339–53.

    Article  CAS  PubMed  Google Scholar 

  19. Chen PS, Swerdlow CD, Hwang C, Karagueuzian HS. Current concepts of ventricular defibrillation. J Cardiovasc Electrophysiol. 1998;9(5):553–62.

    Article  CAS  PubMed  Google Scholar 

  20. Zipes DP, Fischer J, King RM, et al. Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol. 1975;36(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  21. Frazier DW, Wolf PD, Wharton JM, Tang AS, Smith WM, Ideker RE. Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium. J Clin Invest. 1989;83(3):1039–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dillon SM. Synchronized repolarization after defibrillation shocks. A possible component of the defibrillation process demonstrated by optical recordings in rabbit heart. Circulation. 1992;85(5):1865–78.

    Article  CAS  PubMed  Google Scholar 

  23. Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev T, Tchou PJ. Virtual electrode–induced phase singularity. Circ Res. 1998;82(8):918–25.

    Article  CAS  PubMed  Google Scholar 

  24. Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrode-induced reexcitation: a mechanism of defibrillation. Circ Res. 1999;85(11):1056–66.

    Article  CAS  PubMed  Google Scholar 

  25. Roth BJ. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Trans Biomed Eng. 1995;42(12):1174–84.

    Article  CAS  PubMed  Google Scholar 

  26. Ferris LP, King BG, Spence PW, Williams HB. Effect of electric shock on the heart. Electr Eng. 1936;55(5):498–515.

    Article  Google Scholar 

  27. Wiggers CJ, Wégria R. Ventricular fibrillation due to single, localized induction and condenser shocks applied during the vulnerable phase of ventricular systole. Am J Physiol Content. 1940;128(3):500–5.

    Article  Google Scholar 

  28. Banville I, Gray RA, Ideker RE, Smith WM. Shock-induced figure-of-eight Reentry in the isolated rabbit heart. Circ Res. 1999;85(8):742–52.

    Article  CAS  PubMed  Google Scholar 

  29. Donoso E, Cohn LJ, Friedberg CK. Ventricular arrhythmias after precordial electric shock. Am Heart J. 1967;73(5):595–601.

    Article  CAS  PubMed  Google Scholar 

  30. Waldecker B, Brugada P, Zehender M, Stevenson W, Wellens HJJ. Dysrhythmias after direct-current cardioversion. Am J Cardiol. 1986;57(1):120–3.

    Article  CAS  PubMed  Google Scholar 

  31. Tovar O, Tung L. Electroporation of cardiac cell membranes with monophasic or biphasic rectangular pulses. Pacing Clin Electrophysiol. 1991;14(11):1887–92.

    Article  CAS  PubMed  Google Scholar 

  32. Neunlist M, Tung L. Dose-dependent reduction of cardiac transmembrane potential by high-intensity electrical shocks. Am J Physiol Circ Physiol. 1997;273(6):H2817–25.

    Article  CAS  Google Scholar 

  33. Al-khadra A, Nikolski V, Efimov IR. The role of electroporation in defibrillation. Circ Res. 2000;87:797–804.

    Article  CAS  PubMed  Google Scholar 

  34. Yabe S, Smith WM, Daubert JP, Wolf PD, Rollins DL, Ideker RE. Conduction disturbances caused by high current density electric fields. Circ Res. 1990;66(5):1190–203.

    Article  CAS  PubMed  Google Scholar 

  35. Eysmann SB, Marchlinski FE, Buxton AE, Josephson ME. Electrocardiographic changes after cardioversion of ventricular arrhythmias. Circulation. 1986;73(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  36. Stickney RE, Doherty A, Kudenchuk PJ, Morud SA, Walker C, Chapman FW, et al. Survival and postshock ECG rhythms for out-of-hospital defibrillation. Acad Emerg Med. 1999;6(5):445.

    Google Scholar 

  37. Sparks PB, Kulkarni R, Vohra JK, Mond HG, Jayaprakash S, Yapanis AG, et al. Effect of direct current shocks on left atrial mechanical function in patients with structural heart disease. J Am Coll Cardiol. 1998;31(6):1395–9.

    Article  CAS  PubMed  Google Scholar 

  38. Sparks PB, Jayaprakash S, Mond HG, Vohra JK, Grigg LE, Kalman JM. Left atrial mechanical function after brief duration atrial fibrillation. J Am Coll Cardiol. 1999;33(2):342–9.

    Article  CAS  PubMed  Google Scholar 

  39. Grimm RA, Stewart WJ, Arheart K, Thomas JD, Klein AL. Left atrial appendage “stunning” after electrical cardioversion of atrial flutter: an attenuated response compared with atrial fibrillation as the mechanism for lower susceptibility to thromboembolic events. J Am Coll Cardiol. 1997;29(3):582–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kam RML, Garan H, Mcgovern BA, Ruskin JN, Harthorne JW. Transient right bundle branch block causing R wave attenuation postdefibrillation. Pacing Clin Electrophysiol. 1997;20(1):130–1.

    Article  CAS  PubMed  Google Scholar 

  41. Hasdemir C, Shah N, Rao AP, Acosta H, Matsudaira K, Neas BR, et al. Analysis of troponin I levels after spontaneous implantable cardioverter defibrillator shocks. J Cardiovasc Electrophysiol. 2002;13(2):144–50.

    Article  PubMed  Google Scholar 

  42. Ambler JJS, Deakin CD. A randomized controlled trial of efficacy and ST change following use of the Welch-Allyn MRL PIC biphasic waveform versus damped sine monophasic waveform for external DC cardioversion. Resuscitation. 2006;71(2):146–51.

    Article  PubMed  Google Scholar 

  43. Ohuchi K, Fukui Y, Sakuma I, Shibata N, Honjo H, Kodama I. A dynamic action potential model analysis of shock-induced aftereffects in ventricular muscle by reversible breakdown of cell membrane. IEEE Trans Biomed Eng. 2002;49(1):18–30.

    Article  PubMed  Google Scholar 

  44. Lund M, French J, Johnson R, Williams B, White H. Serum troponins T and I after elective cardioversion. Eur Heart J. 2000;21(3):245–53.

    Article  CAS  PubMed  Google Scholar 

  45. Ricard P, Lévy S, Boccara G, Lakhal E, Bardy G. External cardioversion of atrial fibrillation: comparison of biphasic vs monophasic waveform shocks. Europace. 2001;3(2):96–9.

    Article  CAS  PubMed  Google Scholar 

  46. Niemann JT, Walker RG, Rosborough JP. Intracardiac voltage gradients during transthoracic defibrillation: implications for postshock myocardial injury. Acad Emerg Med. 2005;12(2):99–105.

    Article  PubMed  Google Scholar 

  47. Fedorov VV, Kostecki G, Hemphill M, Efimov IR. Atria are more susceptible to electroporation than ventricles: implications for atrial stunning, shock-induced arrhythmia and defibrillation failure. Heart Rhythm. 2008;5(4):593–604.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Walcott GP, Killingsworth CR, Ideker RE. Do clinically relevant transthoracic defibrillation energies cause myocardial damage and dysfunction? Resuscitation. 2003;59(1):59–70.

    Article  PubMed  Google Scholar 

  49. Bardy GH, Smith WM, Hood MA, Crozier IG, Melton IC, Jordaens L, et al. An entirely subcutaneous implantable cardioverter–defibrillator. N Engl J Med. 2010;363(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  50. Chan JYS, Lelakowski J, Murgatroyd FD, Boersma LV, Cao J, Nikolski V, et al. Novel extravascular defibrillation configuration with a coil in the substernal space. JACC Clin Electrophysiol. 2017;3(8):905–10.

    Article  PubMed  Google Scholar 

  51. Al-Khadra AS, Cheng Y, Tchou PJ, Efimov IR. Electroporation in defibrillation: difference in susceptibility between endocardium and epicardium. PACE. 1999;22(4–11):834.

    Google Scholar 

  52. Al-Khadra AS, Nikolski V, Efimov IR. Electroporation and conduction failure in endocardial bundles in response to defibrillation shocks. PACE. 2000;23(4–11):706.

    Google Scholar 

  53. Tabereaux PB, Walcott GP, Rogers JM, Kim J, Dosdall DJ, Robertson PG, et al. Activation patterns of Purkinje fibers during long-duration ventricular fibrillation in an isolated canine heart model. Circulation. 2007;116(10):1113–9.

    Article  PubMed  Google Scholar 

  54. Jones JL, Jones RE, Balasky G. Microlesion formation in myocardial cells by high-intensity electric field stimulation. Am J Physiol Circ Physiol. 1987;253(2):H480–6.

    Article  CAS  Google Scholar 

  55. Peleska B. Problems of defibrillation and stimulation of the myocardium. Zentralbl Chir. 1965;90(26):1174–88.

    CAS  PubMed  Google Scholar 

  56. Tung L, Tovar O, Neunlist M, Jain SK, O’Neill RJ. Effects of strong electrical shock on cardiac muscle tissue. Ann N Y Acad Sci. 1994;720(1):160–75.

    Article  CAS  PubMed  Google Scholar 

  57. Cheng Y, Tchou PJ, Efimov R. Spatio-temporal characterization of electroporation during defibrillation. Biophys J. 1999;76(1):A85.

    Google Scholar 

  58. Nikolski VP, Sambelashvili AT, Krinsky VI, Efimov IR. Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks. Am J Physiol Circ Physiol. 2004;286(1):H412–8.

    Article  CAS  Google Scholar 

  59. Fast VG, Rohr S, Ideker RE. Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes. Am J Physiol Circ Physiol. 2000;278(3):H688–97.

    Article  CAS  Google Scholar 

  60. Cheng DK-L, Tung L, Sobie EA. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am J Physiol Circ Physiol. 1999;277(1):H351–62.

    Article  CAS  Google Scholar 

  61. Shirakashi R, Köstner CM, Müller KJ, Kürschner M, Zimmermann U, Sukhorukov VL. Intracellular delivery of trehalose into mammalian cells by electropermeabilization. J Membr Biol. 2002;189(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  62. DeBruin KA, Krassowska W. Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks. Ann Biomed Eng. 1998;26(4):584–96.

    Article  CAS  PubMed  Google Scholar 

  63. Aguel F, Debruin KA, Krassowska W, Trayanova NA. Effects of electroporation on the transmembrane potential distribution in a two-dimensional bidomain model of cardiac tissue. J Cardiovasc Electrophysiol. 1999;10(5):701–14.

    Article  CAS  PubMed  Google Scholar 

  64. Koning G, Veefkind AH, Schneider H. Cardiac damage caused by direct application of defibrillator shocks to isolated Langendorffperfused rabbit heart. Am Heart J. 1980;100(4):473–82.

    Article  CAS  PubMed  Google Scholar 

  65. Sambelashvili AT, Nikolski VP, Efimov IR. Virtual electrode theory explains pacing threshold increase caused by cardiac tissue damage. Am J Physiol Circ Physiol. 2004;286(6):H2183–94.

    Article  CAS  Google Scholar 

  66. Rubinsky B. Irreversible electroporation in medicine. Technol Cancer Res Treat. 2007;6(4):255–9.

    Article  PubMed  Google Scholar 

  67. Lavee J, Onik G, Mikus P, Rubinsky B. A novel nonthermal energy source for surgical Epicardial atrial ablation: irreversible electroporation. Heart Surg Forum. 2007;10(2):E162–7.

    Article  PubMed  Google Scholar 

  68. Bertacchini C, Margotti PM, Bergamini E, Lodi A, Ronchetti M, Cadossi R. Design of an irreversible electroporation system for clinical use. Technol Cancer Res Treat. 2007;6(4):313–20.

    Article  PubMed  Google Scholar 

  69. Thomas SP, Guy DJ, Boyd AC, Eipper VE, Ross DL, Chard RB. Comparison of epicardial and endocardial linear ablation using handheld probes. Ann Thorac Surg. 2003;75(2):543–8.

    Article  PubMed  Google Scholar 

  70. Reddy VY, Neuzil P, Koruth JS, Petru J, Funosako M, Cochet H, et al. Pulsed field ablation for pulmonary vein isolation in atrial fibrillation. J Am Coll Cardiol. 2019;74(3):315–26.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Nikolski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikolski, V.P., Efimov, I.R. (2021). The Role of Electroporation. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics