Skip to main content

Newer Models of Cardiac Tissue

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy
  • 681 Accesses

Abstract

Cardiac function is a summation of multiple facets of physiology including electrophysiology, mechanics, fluid dynamics, and cardiac structure. Each of these parameters can modulate cardiac physiology and pathophysiology and are thus crucial components in understanding this complex organ. Thus, the study of cardiac physiology requires multiscale approaches and current models of cardiac tissue used in research can be divided into in vivo, in vitro, and in silico models. Several animal models have been used in in vivo studies including mice, rats, guinea pigs, rabbits, sheep, pigs, and dogs. While these in vivo models can give a complete understanding of systemic effects of diseases and drugs on cardiac physiology, significant species-dependent differences have impeded the progress of this knowledge to benefit human health. To address this concern, in vitro human cardiac models that mimic cardiac physiology including Langendorff-perfused whole heart and wedge preparations, cardiac organotypic slices, as well as two- and three-dimensional cell cultures with multiple cardiac cell types were developed. In vivo conditions such as electrical and mechanical stimulation and structural anisotropy have also been incorporated in these cell culture models. Finally, mechanistic in silico models and their applications in cardiac pathophysiology and drug response predictions are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allam AH, Thompson RC, Wann LS, et al. Atherosclerosis in ancient Egyptian mummies: the horus study. JACC Cardiovasc Imaging. 2011;4:315. https://doi.org/10.1016/j.jcmg.2011.02.002.

    Article  PubMed  Google Scholar 

  2. Salama G, London B. Mouse models of long QT syndrome. J Physiol. 2007;578:43. https://doi.org/10.1113/jphysiol.2006.118745.

    Article  CAS  PubMed  Google Scholar 

  3. Lutz TA, Woods SC. Overview of animal models of obesity. Curr Protoc Pharmacol. 2012;58:5.61.1. https://doi.org/10.1002/0471141755.ph0561s58.

    Article  Google Scholar 

  4. Camacho P, Fan H, Liu Z, He JQ. Small mammalian animal models of heart disease. Am J Cardiovasc Dis. 2016;6(3):70–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. DeMartini T, Nowell M, James J, Williamson L, Lahni P, Shen H, Kaplan JM. High fat diet-induced obesity increases myocardial injury and alters cardiac STAT3 signaling in mice after polymicrobial sepsis. Biochim Biophys Acta Mol basis Dis. 2017;1863:2654. https://doi.org/10.1016/j.bbadis.2017.06.008.

    Article  CAS  PubMed  Google Scholar 

  6. Fang CX, Dong F, Thomas DP, Ma H, He L, Ren J. Hypertrophic cardiomyopathy in high-fat diet-induced obesity: role of suppression of forkhead transcription factor and atrophy gene transcription. Am J Physiol Heart Circ Physiol. 2008;295:H1206. https://doi.org/10.1152/ajpheart.00319.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alarcon G, Roco J, Medina M, Medina A, Peral M, Jerez S. High fat diet-induced metabolically obese and normal weight rabbit model shows early vascular dysfunction: mechanisms involved. Int J Obes. 2018;42:1535. https://doi.org/10.1038/s41366-018-0020-6.

    Article  CAS  Google Scholar 

  8. Dhungel S, Sinha R, Sinha M, Paudel BH, Bhattacharya N, Mandal MB. High fat diet induces obesity in British Angora Rabbit: a model for experimental obesity. Indian J Physiol Pharmacol. 2009;53(1):55–60.

    CAS  PubMed  Google Scholar 

  9. Fitzgerald SM, Henegar JR, Brands MW, Henegar LK, Hall JE. Cardiovascular and renal responses to a high-fat diet in Osborne-Mendel rats. Am J Physiol Regul Integr Comp Physiol. 2001;281:R547.

    Article  CAS  PubMed  Google Scholar 

  10. Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, Blanco-Colio L, Lavin B, Mallavia B, Tarin C, Mas S, Ortiz A, Egido J. Animal models of cardiovascular diseases. J Biomed Biotechnol. 2011;2011:1.

    Article  Google Scholar 

  11. Han C, Pogwizd SM, Killingsworth CR, He B. Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the rabbit heart. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1684–7. https://doi.org/10.1109/IEMBS.2011.6090484.

    Article  PubMed  Google Scholar 

  12. Orini M, Taggart P, Lambiase PD. In vivo human sock-mapping validation of a simple model that explains unipolar electrogram morphology in relation to conduction-repolarization dynamics. J Cardiovasc Electrophysiol. 2018;29:990. https://doi.org/10.1111/jce.13606.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ando K, Takahara A, Nakamura Y, et al. Changes of electrocardiogram and hemodynamics in response to dipyridamole: in vivo comparative analyses using anesthetized beagle dogs and microminipigs. J Pharmacol Sci. 2018;136:86. https://doi.org/10.1016/j.jphs.2018.01.002.

    Article  CAS  PubMed  Google Scholar 

  14. Lee P, Quintanilla JG, Alfonso-Almazán JM, et al. In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models. Cardiovasc Res. 2019;115:1659. https://doi.org/10.1093/cvr/cvz039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zimmer H-G. The isolated perfused heart and its pioneers. Physiology. 1998;13:203. https://doi.org/10.1152/physiologyonline.1998.13.4.203.

    Article  Google Scholar 

  16. Skrzypiec-Spring M, Grotthus B, Szelag A, Schulz R. Isolated heart perfusion according to Langendorff-Still viable in the new millennium. J Pharmacol Toxicol Methods. 2007;55:113. https://doi.org/10.1016/j.vascn.2006.05.006.

    Article  CAS  PubMed  Google Scholar 

  17. Langendorff O. Untersuchungen am überlebenden Säugethierherzen. Pflüger. 1895;61:291. https://doi.org/10.1007/BF01812150.

    Article  Google Scholar 

  18. Liao R, Podesser BK, Lim CC. The continuing evolution of the Langendorff and ejecting murine heart: new advances in cardiac phenotyping. Am J Physiol Heart Circ Physiol. 2012;303:H156. https://doi.org/10.1152/ajpheart.00333.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lateef R, Al-Masri A, Alyahya A. Langendorff’s isolated perfused rat heart technique: a review. Int J Basic Clin Pharmacol. 2015;4:1314–22. https://doi.org/10.18203/2319-2003.ijbcp20151381.

    Article  Google Scholar 

  20. Yeo JM, Tse V, Kung J, Lin HY, Lee YT, Kwan J, Yan BP, Tse G. Isolated heart models for studying cardiac electrophysiology: a historical perspective and recent advances. J Basic Clin Physiol Pharmacol. 2017;28(3):191–200. https://doi.org/10.1515/jbcpp-2016-0110.

    Article  PubMed  Google Scholar 

  21. Milani-Nejad N, Janssen PML. Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther. 2014;141:235. https://doi.org/10.1016/j.pharmthera.2013.10.007.

    Article  CAS  PubMed  Google Scholar 

  22. Benforado JM. The effects of vagal stimulation on the isolated perfused rat heart. J Physiol. 1959;145:266. https://doi.org/10.1113/jphysiol.1959.sp006141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buschman HP, Storm CJ, Duncker DJ, Verdouw PD, et al. Heart rate control via vagus nerve stimulation. Neuromodulation. 2006;9:214. https://doi.org/10.1111/j.1525-1403.2006.00062.x.

    Article  PubMed  Google Scholar 

  24. Antzelevitch C. Cellular basis for the repolarization waves of the ECG. Ann N Y Acad Sci. 2006;1080:268. https://doi.org/10.1196/annals.1380.021.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yan GX, Antzelevitch C. Cellular basis for the electrocardiographic J wave. Circulation. 1996;93:372. https://doi.org/10.1161/01.CIR.93.2.372.

    Article  CAS  PubMed  Google Scholar 

  26. Yan GX, Shimizu W, Antzelevitch C. Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparations. Circulation. 1998;98:1921. https://doi.org/10.1161/01.CIR.98.18.1921.

    Article  CAS  PubMed  Google Scholar 

  27. Glukhov AV, Fedorov VV, Lou Q, Ravikumar VK, Kalish PW, Schuessler RB, Moazami N, Efimov IR. Transmural dispersion of repolarization in failing and nonfailing human ventricle. Circ Res. 2010;106:981. https://doi.org/10.1161/CIRCRESAHA.109.204891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Valderrábano M, Lee MH, Ohara T, Lai AC, Fishbein MC, Lin SF, Karagueuzian HS, Chen PS. Dynamics of intramural and transmural reentry during ventricular fibrillation in isolated swine ventricles. Circ Res. 2001;88:839. https://doi.org/10.1161/hh0801.089259.

    Article  PubMed  Google Scholar 

  29. Liu T, Brown BS, Wu Y, Antzelevitch C, Kowey PR, Yan GX. Blinded validation of the isolated arterially perfused rabbit ventricular wedge in preclinical assessment of drug-induced proarrhythmias. Heart Rhythm. 2006;3:948. https://doi.org/10.1016/j.hrthm.2006.04.021.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shenasa M, Hindricks G, Borggrefe M, Breithardt G. Cardiac mapping. Card Mapp. 2009; https://doi.org/10.1002/9781444303438.

  31. Brandenburger M, Wenzel J, Bogdan R, Richardt D, Nguemo F, Reppel M, Hescheler J, Terlau H, Dendorfer A. Organotypic slice culture from human adult ventricular myocardium. Cardiovasc Res. 2012;93:50–9.

    Article  CAS  PubMed  Google Scholar 

  32. Habeler W, Peschanski M, Monville C. Organotypic heart slices for cell transplantation and physiological studies. Organogenesis. 2009;5:62. https://doi.org/10.4161/org.5.2.9091.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kang C, Qiao Y, Li G, Baechle K, Camelliti P, Rentschler S, Efimov IR. Human organotypic cultured cardiac slices: new platform for high throughput preclinical human trials. Sci Rep. 2016;6:28798. https://doi.org/10.1038/srep28798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ou Q, Jacobson Z, Abouleisa RRE, et al. Physiological biomimetic culture system for pig and human heart slices. Circ Res. 2019;125:628–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qiao Y, Dong Q, B L, et al. (18AD) Multiparametric slice culture platform for the investigation of human cardiac tissue physiology. Prog Biophys Mol Biol. 2019;144:139–50.

    Article  PubMed  Google Scholar 

  36. Veldhuizen J, Migrino RQ, Nikkhah M. Three-dimensional microengineered models of human cardiac diseases. J Biol Eng. 2019;13:29. https://doi.org/10.1186/s13036-019-0155-6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lyon AR, Joudrey PJ, Jin D, Nass RD, Aon MA, Rourke B, Akar FG. Optical imaging of mitochondrial function uncovers actively propagating waves of mitochondrial membrane potential collapse across intact heart. J Mol Cell Cardiol. 2010;49:565. https://doi.org/10.1016/j.yjmcc.2010.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Venable PW, Taylor TG, Sciuto KJ, Zhao J, Shibayama J, Warren M, Spitzer KW, Zaitsev AV. Detection of mitochondrial depolarization/recovery during ischaemia-reperfusion using spectral properties of confocally recorded TMRM fluorescence. J Physiol. 2013;591:2781. https://doi.org/10.1113/jphysiol.2012.248153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moretti A, Bellin M, Welling A, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010;363:1397. https://doi.org/10.1056/NEJMoa0908679.

    Article  CAS  PubMed  Google Scholar 

  40. Liang P, Sallam K, Wu H, et al. Patient-specific and genome-edited induced pluripotent stem cell–derived cardiomyocytes elucidate single-cell phenotype of brugada syndrome. J Am Coll Cardiol. 2016;68:2086. https://doi.org/10.1016/j.jacc.2016.07.779.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wei H, Zhang XH, Clift C, Yamaguchi N, Morad M. CRISPR/Cas9 Gene editing of RyR2 in human stem cell-derived cardiomyocytes provides a novel approach in investigating dysfunctional Ca2+ signaling. Cell Calcium. 2018;73:104. https://doi.org/10.1016/j.ceca.2018.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song LJ, Sirabella D, Morikawa K, Teles D, Yazawa M, Vunjak-Novakovic G. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018;556:239. https://doi.org/10.1038/s41586-018-0016-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials. 2013;34:5813. https://doi.org/10.1016/j.biomaterials.2013.04.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao Y, Rafatian N, Feric NT, et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell. 2019;176:913. https://doi.org/10.1016/j.cell.2018.11.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yan Y, Bejoy J, Xia J, Griffin K, Guan J, Li Y. Cell population balance of cardiovascular spheroids derived from human induced pluripotent stem cells. Sci Rep. 2019;9:1–12. https://doi.org/10.1038/s41598-018-37686-1.

    Article  CAS  Google Scholar 

  46. Zuppinger C. 3D cardiac cell culture: a critical review of current technologies and applications. Front Cardiovasc Med. 2019;6:87. https://doi.org/10.3389/fcvm.2019.00087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Polonchuk L, Chabria M, Badi L, Hoflack JC, Figtree G, Davies MJ, Gentile C. Cardiac spheroids as promising in vitro models to study the human heart microenvironment. Sci Rep. 2017;7(1):1–12. https://doi.org/10.1038/s41598-017-06385-8.

    Article  CAS  Google Scholar 

  48. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract. 2013;2013:38. https://doi.org/10.5339/gcsp.2013.38.

    Article  Google Scholar 

  49. Huang S, Yang Y, Yang Q, Zhao Q, Ye X. Engineered circulatory scaffolds for building cardiac tissue. J Thorac Dis. 2018;10:S2312. https://doi.org/10.21037/jtd.2017.12.92.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schaaf S, Shibamiya A, Mewe M, et al. Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One. 2011;6:e26397. https://doi.org/10.1371/journal.pone.0026397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mannhardt I, Breckwoldt K, Letuffe-Brenière D, et al. Human engineered heart tissue: analysis of contractile force. Stem Cell Reports. 2016;7:29. https://doi.org/10.1016/j.stemcr.2016.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tiburcy M, Hudson JE, Balfanz P, et al. Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation. 2017;135:1832. https://doi.org/10.1161/CIRCULATIONAHA.116.024145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang YS, Aleman J, Arneri A, Bersini S, Piraino F, Shin SR, Dokmeci MR, Khademhosseini A. From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomed Mater. 2015;10:034006. https://doi.org/10.1088/1748-6041/10/3/034006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qian F, Huang C, Lin YD, et al. Simultaneous electrical recording of cardiac electrophysiology and contraction on chip. Lab Chip. 2017;17:1732. https://doi.org/10.1039/c7lc00210f.

    Article  CAS  PubMed  Google Scholar 

  55. Kitsara M, Kontziampasis D, Agbulut O, Chen Y. Heart on a chip: micro-nanofabrication and microfluidics steering the future of cardiac tissue engineering. Microelectron Eng. 2019;203-204:44. https://doi.org/10.1016/j.mee.2018.11.001.

    Article  CAS  Google Scholar 

  56. Noble D. A modification of the Hodgkin—Huxley equations applicable to Purkinje fibre action and pacemaker potentials. J Physiol. 1962;160:317. https://doi.org/10.1113/jphysiol.1962.sp006849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. O’Hara T, Virág L, Varró A, Rudy Y. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol. 2011;7:e1002061. https://doi.org/10.1371/journal.pcbi.1002061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yarov-Yarovoy V, Allen TW, Clancy CE. Computational models for predictive cardiac ion channel pharmacology. Drug Discov Today Dis Model. 2014;14:3. https://doi.org/10.1016/j.ddmod.2014.04.001.

    Article  Google Scholar 

  59. Hund TJ, Rudy Y. Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation. 2004;110:3168. https://doi.org/10.1161/01.CIR.0000147231.69595.D3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang Y, Barocas VH, Berceli SA, et al. Multi-scale modeling of the cardiovascular system: disease development, progression, and clinical intervention. Ann Biomed Eng. 2016;44:2642. https://doi.org/10.1007/s10439-016-1628-0.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Abriel H, de Lange E, Kucera JP, Loussouarn G, Tarek M. Computational tools to investigate genetic cardiac channelopathies. Front Physiol. 2013;4:390. https://doi.org/10.3389/fphys.2013.00390.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Musgaard M, Paramo T, Domicevica L, Andersen OJ, Biggin PC. Insights into channel dysfunction from modelling and molecular dynamics simulations. Neuropharmacology. 2018;132:20. https://doi.org/10.1016/j.neuropharm.2017.06.030.

    Article  CAS  PubMed  Google Scholar 

  63. Jafri MS. Models of excitation-contraction coupling in cardiac ventricular myocytes. Methods Mol Biol. 2012;910:309–35. https://doi.org/10.1007/978-1-61779-965-5_14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bell MM, Cherry EM. Computational cardiac electrophysiology: implementing mathematical models of cardiomyocytes to simulate action potentials of the heart. Methods Mol Biol. 2015;1299:65–74. https://doi.org/10.1007/978-1-4939-2572-8_5.

    Article  CAS  PubMed  Google Scholar 

  65. Kheyfets VO, Rios L, Smith T, et al. Patient-specific computational modeling of blood flow in the pulmonary arterial circulation. Comput Methods Prog Biomed. 2015;120:88. https://doi.org/10.1016/j.cmpb.2015.04.005.

    Article  Google Scholar 

  66. Trayanova NA. Computational cardiology: the heart of the matter. ISRN Cardiol. 2012;2012:1. https://doi.org/10.5402/2012/269680.

    Article  Google Scholar 

  67. Lopez-Perez A, Sebastian R, Izquierdo M, Ruiz R, Bishop M, Ferrero JM. Personalized cardiac computational models: from clinical data to simulation of infarct-related ventricular tachycardia. Front Physiol. 2019;10:580. https://doi.org/10.3389/fphys.2019.00580.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Szopos M, Poussineau N, Maday Y, Canniffe C, Celermajer DS, Bonnet D, Ou P. Computational modeling of blood flow in the aorta – insights into eccentric dilatation of the ascending aorta after surgery for coarctation. J Thorac Cardiovasc Surg. 2014;148:1572. https://doi.org/10.1016/j.jtcvs.2013.11.055.

    Article  PubMed  Google Scholar 

  69. Mayourian J, Sobie EA, Costa KD. An introduction to computational modeling of cardiac electrophysiology and arrhythmogenicity. Methods Mol Biol. 2018;1816:17–35. https://doi.org/10.1007/978-1-4939-8597-5_2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pathmanathan P, Gray RA. Validation and trustworthiness of multiscale models of cardiac electrophysiology. Front Physiol. 2018;9:106. https://doi.org/10.3389/fphys.2018.00106.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chi KR. Revolution dawning in cardiotoxicity testing. Nat Rev Drug Discov. 2013;12:565. https://doi.org/10.1038/nrd4083.

    Article  CAS  PubMed  Google Scholar 

  72. Gintant G, Sager PT, Stockbridge N. Evolution of strategies to improve preclinical cardiac safety testing. Nat Rev Drug Discov. 2016;15:457. https://doi.org/10.1038/nrd.2015.34.

    Article  CAS  PubMed  Google Scholar 

  73. Louch WE, Sheehan KA, Wolska BM. Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol. 2011;51:288. https://doi.org/10.1016/j.yjmcc.2011.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Di Diego JM, Sicouri S, Myles RC, et al. Optical and electrical recordings from isolated coronary-perfused ventricular wedge preparations. J Mol Cell Cardiol. 2013;54:53–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon A. George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, Z., George, S.A. (2021). Newer Models of Cardiac Tissue. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics