Skip to main content

The Bidomain Model of Cardiac Tissue: From Microscale to Macroscale

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy

Abstract

Cardiac muscle is made up of coupled myocytes, embedded in an interstitial space comprised of blood vessels, connective tissue, fibroblasts fluid, and other cell types and adjoining some extracellular fluid. The bidomain model was originally developed to describe the current flow in both these three spaces using continuous partial differential equations. The classical form assumes averaged potentials and currents and considers the intracellular and interstitial spaces to be separated by a cell membrane, defined at every point in space. Over the last 40 years, the model has been used to study stimulation through the extracellular or interstitial currents, the effect of the adjoining fluid on wavefront propagation and the basis for the extracellular potentials often recorded clinically. In this chapter, we derive the bidomain model from idealized lattice of cells coupled through gap junctions and show how the tissue conductivities and associated anisotropy relate to the underlying cellular structure. We also discuss some of the challenges to bidomain prediction that may necessitate changes to the underlying formulation to capture certain diseased states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saffitz JE, Davis LM, Darrow BJ, Kanter HL, Laing JG, Beyer EC. The molecular-basis of anisotropy – role of gap-junctions. J Cardiovasc Electrophysiol. 1995;6(6):498–510.

    Article  CAS  PubMed  Google Scholar 

  2. Severs NJ. Microscopy of the gap junction: a historical perspective. Microsc Res Tech. 1995;31(5):338–46. https://doi.org/10.1002/jemt.1070310503.

    Article  CAS  PubMed  Google Scholar 

  3. Evans WH, Martin PE. Gap junctions: structure and function (review). Mol Membr Biol. 2002;19(2):121–36.

    Article  CAS  PubMed  Google Scholar 

  4. Saffitz JE, Hoyt RH, Luke RA, Kanter HL, Beyer EC. Cardiac myocyte interconnections at gap-junctions – role in normal and abnormal electrical-conduction. Trends Cardiovasc Med. 1992;2(2):56–60.

    Article  CAS  PubMed  Google Scholar 

  5. Brette F, Orchard C. T-tubule function in mammalian cardiac myocytes. Circ Res. 2003;92(11):1182–92.

    Article  CAS  PubMed  Google Scholar 

  6. Frank JS, Langer GA. Myocardial interstitium – its structure and its role in ionic exchange. J Cell Biol. 1974;60(3):586–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baudino TA, Carver W, Giles W, Borg TK. Cardiac fibroblasts: friend or foe? Am J Phys Heart Circ Phys. 2006;291(3):H1015–H26.

    CAS  Google Scholar 

  8. Kleber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev. 2004;84(2):431–88.

    Article  CAS  PubMed  Google Scholar 

  9. Fleischhauer J, Lehmann L, Kleber AG. Electrical resistances of interstitial and microvascular space as determinants of the extracellular electrical-field and velocity of propagation in ventricular myocardium. Circulation. 1995;92(3):587–94.

    Article  CAS  PubMed  Google Scholar 

  10. Kleber AG. Conduction of the impulse in the ischemic myocardium – implications for malignant ventricular arrhythmias. Experientia. 1987;43(10):1056–61.

    Article  CAS  PubMed  Google Scholar 

  11. Henriquez CS, Papazoglou AA. Using computer models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis. Proc IEEE. 1996;84(3):334–54.

    Article  CAS  Google Scholar 

  12. Pullan AJ, Cheng LK, Buist ML. Mathematically modelling the electrical activity of the heart: from cell to body surface and back again. New Jersey: World Scientific; 2005.

    Book  Google Scholar 

  13. Neu JC, Krassowska W. Homogenization of syncytial tissues. Crit Rev Biomed Eng. 1993;21(2):137–99.

    CAS  PubMed  Google Scholar 

  14. Keener JP, Sneyd J. Mathematical physiology. In: Interdisciplinary applied mathematics, vol. 8. Corrected 2nd printing ed. New York: Springer; 2001.

    Google Scholar 

  15. Pennacchio M, Savare G, Franzone PC. Multiscale modeling for the bioelectric activity of the heart. SIAM J Math Anal. 2006;37(4):1333–70.

    Article  Google Scholar 

  16. Hornung U. Homogenization and porous media. In: Interdisciplinary applied mathematics, vol. 6. New York: Springer; 1997.

    Google Scholar 

  17. Henriquez CS. Simulating the electrical behavior of cardiac tissue using the Bidomain model. Crit Rev Biomed Eng. 1993;21(1):1–77.

    CAS  PubMed  Google Scholar 

  18. Miller WT, Geselowitz DB. Simulation studies of electrocardiogram .1. Normal heart. Circ Res. 1978;43(2):301–15.

    Article  CAS  PubMed  Google Scholar 

  19. Miller WT, Geselowitz DB. Simulation studies of electrocardiogram 2. Ischemia and infarction. Circ Res. 1978;43(2):315–23.

    Article  PubMed  Google Scholar 

  20. Plonsey R, Barr RC. A critique of impedance measurements in cardiac tissue. Ann Biomed Eng. 1986;14(4):307–22.

    Article  CAS  PubMed  Google Scholar 

  21. Jongsma HJ, Wilders R. Gap junctions in cardiovascular disease. Circ Res. 2000;86(12):1193–7.

    Article  CAS  PubMed  Google Scholar 

  22. Weingart R, Maurer P. Action-potential transfer in cell pairs isolated from adult-rat and guinea-pig ventricles. Circ Res. 1988;63(1):72–80.

    Article  CAS  PubMed  Google Scholar 

  23. Shaw RM, Rudy Y. Ionic mechanisms of propagation in cardiac tissue – roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ Res. 1997;81(5):727–41.

    Article  CAS  PubMed  Google Scholar 

  24. LeGrice I, Sands G, Hooks D, Gerneke D, Smaill B. Microscopic imaging of extended tissue volumes. Clin Exp Pharmacol Physiol. 2004;31(12):902–5.

    Article  CAS  PubMed  Google Scholar 

  25. Legrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ. Laminar structure of the heart – ventricular myocyte arrangement and connective-tissue architecture in the dog. Am J Phys Heart Circ Phys. 1995;38(2):H571–H82.

    Google Scholar 

  26. Streeter DD Jr, Spotnitz HM, Patel DP, Ross J Jr, Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res. 1969;24(3):339–47.

    Article  PubMed  Google Scholar 

  27. Hsu EW, Henriquez CS. Myocardial fiber orientation mapping using reduced encoding diffusion tensor imaging. J Cardiovasc Magn Reson. 2001;3(4):339–47.

    Article  CAS  PubMed  Google Scholar 

  28. Scollan DF, Holmes A, Winslow R, Forder J. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Phys Heart Circ Phys. 1998;44(6):H2308–H18.

    Google Scholar 

  29. Gupta M, Rollins AM, Izatt JA, Efimov IR. Imaging of the atrioventricular node using optical coherence tomography. J Cardiovasc Electrophysiol. 2002;13(1):95.

    Article  PubMed  Google Scholar 

  30. Franzone PC, Guerri L, Pennacchio M, Taccardi B. Spread of excitation in 3-D models of the anisotropic cardiac tissue. III. Effects of ventricular geometry and fiber structure on the potential distribution. Math Biosci. 1998;151(1):51–98.

    Article  Google Scholar 

  31. Franzone PC, Guerri L, Pennacchio M, Taccardi B. Anisotropic mechanisms for multiphasic unipolar electrograms: simulation studies and experimental recordings. Ann Biomed Eng. 2000;28(11):1326–42.

    Article  CAS  PubMed  Google Scholar 

  32. Taccardi B, Macchi E, Lux RL, Ershler PR, Spaggiari S, Baruffi S, et al. Effect of myocardial fiber direction on epicardial potentials. Circulation. 1994;90(6):3076–90.

    Article  CAS  PubMed  Google Scholar 

  33. Wang S, Leon LJ, Roberge FA. Interactions between adjacent fibers in a cardiac muscle bundle. Ann Biomed Eng. 1996;24(6):662–74. https://doi.org/10.1007/bf02684179.

    Article  CAS  PubMed  Google Scholar 

  34. Roberts SF, Stinstra JG, Henriquez CS. Effect of nonuniform interstitial space properties on impulse propagation: a discrete multidomain model. Biophys J. 2008;95(8):3724–37. https://doi.org/10.1529/biophysj.108.137349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sommer JR. Implications of structure and geometry on cardiac electrical activity. Ann Biomed Eng. 1983;11(3–4):149–57. https://doi.org/10.1007/bf02363283.

    Article  CAS  PubMed  Google Scholar 

  36. Veeraraghavan R, Salama ME, Poelzing S. Interstitial volume modulates the conduction velocity-gap junction relationship. Am J Physiol Heart Circ Physiol. 2012;302(1):H278–86. https://doi.org/10.1152/ajpheart.00868.2011.

    Article  CAS  PubMed  Google Scholar 

  37. Sperelakis N, Hoshiko T, Berne RM. Nonsyncytial nature of cardiac muscle: membrane resistance of single cells. Am J Phys. 1960;198:531–6. https://doi.org/10.1152/ajplegacy.1960.198.3.531.

    Article  CAS  Google Scholar 

  38. Sperelakis N, Mann JE Jr. Evaluation of electric field changes in the cleft between excitable cells. J Theor Biol. 1977;64(1):71–96. https://doi.org/10.1016/0022-5193(77)90114-x.

    Article  CAS  PubMed  Google Scholar 

  39. Lin J, Keener JP. Modeling electrical activity of myocardial cells incorporating the effects of ephaptic coupling. Proc Natl Acad Sci U S A. 2010;107(49):20935–40. https://doi.org/10.1073/pnas.1010154107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin J, Keener JP. Ephaptic coupling in cardiac myocytes. IEEE Trans Biomed Eng. 2013;60(2):576–82. https://doi.org/10.1109/TBME.2012.2226720.

    Article  PubMed  Google Scholar 

  41. Lin J, Keener JP. Microdomain effects on transverse cardiac propagation. Biophys J. 2014;106(4):925–31. https://doi.org/10.1016/j.bpj.2013.11.1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roth BJ, Lin SF, Wikswo JP. Unipolar stimulation of cardiac tissue. J Electrocardiol. 1998;31:6–12.

    Article  PubMed  Google Scholar 

  43. Trayanova NA, Roth BJ, Malden LJ. The response of a spherical heart to a uniform electric-field – a bidomain analysis of cardiac stimulation. IEEE Trans Biomed Eng. 1993;40(9):899–908.

    Article  CAS  PubMed  Google Scholar 

  44. Sepulveda NG, Roth BJ, Wikswo JP Jr. Current injection into a two-dimensional anisotropic bidomain. Biophys J. 1989;55(5):987–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wikswo JP, Lin SF, Abbas RA. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J. 1995;69(6):2195–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Colli Franzone P, Guerri L, Taccardi B. Potential distributions generated by point stimulation in a myocardial volume: simulation studies in a model of anisotropic ventricular muscle. J Cardiovasc Electrophysiol. 1993;4(4):438–58.

    Article  CAS  PubMed  Google Scholar 

  47. Muzikant AL, Hsu EW, Wolf PD, Henriquez CS. Region specific modeling of cardiac muscle: comparison of simulated and experimental potentials. Ann Biomed Eng. 2002;30(7):867–83.

    Article  PubMed  Google Scholar 

  48. Hooks DA, Tomlinson KA, Marsden SG, LeGrice IJ, Smaill BH, Pullan AJ, et al. Cardiac microstructure – implications for electrical, propagation and defibrillation in the heart. Circ Res. 2002;91(4):331–8.

    Article  CAS  PubMed  Google Scholar 

  49. Spach MS, Barr RC. Effects of cardiac microstructure on propagating electrical waveforms. Circ Res. 2000;86(2):E23–8.

    Article  CAS  PubMed  Google Scholar 

  50. Spach MS, Heidlage JF, Dolber PC, Barr RC. Extracellular discontinuities in cardiac muscle: evidence for capillary effects on the action potential foot. Circ Res. 1998;83(11):1144–64.

    Article  CAS  PubMed  Google Scholar 

  51. Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys. 1997;134(1):169–89.

    Article  Google Scholar 

  52. Beard DA, Bassingthwaighte JB, Greene AS. Computational modeling of physiological systems. Physiol Genomics. 2005;23(1):1–3.

    Article  PubMed  Google Scholar 

  53. Trew ML, Caldwell BJ, Sands GB, Hooks DA, Tai DCS, Austin TM, et al. Cardiac electrophysiology and tissue structure: bridging the scale gap with a joint measurement and modelling paradigm. Exp Physiol. 2006;91(2):355–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Henriquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Henriquez, C.S., Ying, W. (2021). The Bidomain Model of Cardiac Tissue: From Microscale to Macroscale. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics