Skip to main content

Proposal for a New Method to Improve the Trajectory Generation of a Robotic Arm Using a Distribution Function

  • Conference paper
  • First Online:
New Perspectives in Software Engineering (CIMPS 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1297))

Included in the following conference series:

Abstract

Robotic control is one of the most important problems and is considered the central part of trajectory planning and motion control, and several methods can be found to generate the trajectory of a robotic arm. However, those methods imply a lot of calculation process and operations or other problems that cause decreasing the accuracy of the results and much compile time. For these reasons, a novel method is proposed to calculate the trajectory and get really accurate results with an insignificant compile time. Also, it is easy to implement, and it can make different velocities and acceleration shapes to obtain a smooth trajectory, opening new ways of control applications. the values for different initial and final positions using the distribution function proposed, LSPB, and cubic polynomial have been compared with a trajectory of 1 and 0.5 s. The paper ends with a critical discussion of experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grau, A., Indri, M., Bello, L.L., Sauter, T.: Industrial robotics in factory automation: from the early stage to the Internet of Things. In: 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, pp. 6159–6164. IEEE Press (2017)

    Google Scholar 

  2. Yenorkar, R., Chaskar, U.M.: GUI based pick and place robotic arm for multipurpose industrial applications. In: Second International Conference on Intelligent Computing and Control Systems, Madurai, India, pp. 200–203 (2018)

    Google Scholar 

  3. Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015)

    Article  Google Scholar 

  4. Murali, A., Sen, S., Kehoe, B., Garg, A., Mcfarland, S., Patil, S., Boyd, W.D., Lim, S., Abbeel, P., Goldberg, K.: Learning by observation for surgical subtasks: multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms. In: IEEE International Conference on Robotics and Automation, Seattle, WA, pp. 1202–1209. IEEE Press (2015)

    Google Scholar 

  5. Williams, R.L.: Simplified robotics joint-space trajectory generation with a via point using a single polynomial. J. Robot. 2013, 1–6 (2013)

    Article  Google Scholar 

  6. Dong, M., Yao, G., Li, J., Zhang, L.: Research on attitude interpolation and tracking control based on improved orientation vector SLERP method. Robotica 38(4), 719–731 (2020)

    Article  Google Scholar 

  7. Sidobre, D., Desormeaux, K.: Smooth cubic polynomial trajectories for human-robot interactions. J. Intell. Robot. Syst. 95, 851–869 (2018)

    Article  Google Scholar 

  8. Hong-Jun, H., Yungdeug, S., Jang-Mok, K.: A trapezoidal velocity profile generator for position control using a feedback strategy. Energies 12(7), 1–14 (2019)

    Google Scholar 

  9. Sciavicco, L., Siciliano, B.: Modelling and Control of Robot Manipulators. Springer, London (2010)

    MATH  Google Scholar 

  10. Liu, X., Qiu, C., Zeng, Q., Li, A.: Kinematics analysis and trajectory planning of collaborative welding robot with multiple manipulators. Procedia CIRP 81, 1034–1039 (2019)

    Article  Google Scholar 

  11. Zhao, R., Shi, Z., Guan, Y., Shao, Z., Zhang, Q., Wang, G.: Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden-Kahan subproblem. Int. J. Adv. Robot. Syst. 15(6), 1–11 (2018)

    Google Scholar 

  12. Wang, Y., Su, C., Wang, H., Zhang Z., Sheng, C., Cui, W., Liang, X., Lu, X.: A convenient kinematic calibration and inverse solution method for 4-DOF robot. In: Chinese Control and Decision Conference, Nanchang, China, pp. 5747–5750. IEEE Press (2019)

    Google Scholar 

  13. Csanádi, B., Tar, J.K., Bitó, J.F.: Matrix inversion-free quasi-differential approach in solving the inverse kinematic task. In: 17th International Symposium on Computational Intelligence and Informatics, Budapest, pp. 000061–000066. IEEE Press (2016)

    Google Scholar 

  14. Liu, W., Chen, D., Steil, J.J.: Analytical inverse kinematics solver for anthropomorphic 7-DOF redundant manipulators with human-like configuration constraints. J. Intell. Robot. Syst. 86(1), 63–79 (2017)

    Article  Google Scholar 

  15. Kuhlemann, I., Schweikard, A., Ernst, F., Jauer, P.: Robust inverse kinematics by configuration control for redundant manipulators with seven DOF. In: 2nd International Conference on Control, Automation and Robotics, Hong Kong, pp. 49–55. IEEE Press (2016)

    Google Scholar 

  16. Gong, M., Li, X., Zhang, L.: Analytical inverse kinematics and self-motion application for 7-DOF redundant manipulator. IEEE Access 7, 18662–18674 (2019)

    Article  Google Scholar 

  17. Aroca-Trujillo, J.L., Pérez-Ruiz, A., Rodriguez-Serrezuela, R.: Generation and control of basic geometric trajectories for a robot manipulator using CompactRIO®. J. Robotics. 2017, 1–11 (2017)

    Article  Google Scholar 

  18. Barghi-Jond, H., Nabiyev, V., Benveniste, R.: Trajectory planning using high order polynomials under acceleration constraint. J. Optim. Ind. Eng. 10(21), 1–6 (2017)

    Google Scholar 

  19. Mukadam, M., Yan, X., Boots, B.: Gaussian process motion planning. In: International Conference on Robotics and Automation, pp. 9–15, IEEE Press, Stockholm (2016)

    Google Scholar 

  20. Park, K.I.: Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer, Cham (2018)

    Book  Google Scholar 

  21. Zhiyong, Z., Dongjian, H., Lei, T., Lingshuai, M.: Picking robot arm trajectory planning method. Sens. Transd. 162, 11–20 (2014)

    Google Scholar 

  22. García Martínez, J.R., Rodríguez Reséndiz, J., Martínez Prado, M.Á., Cruz Miguel, E.E.: Assessment of jerk performance s-curve and trapezoidal velocity profiles. In: International Engineering Congress, Santiago de Queretaro, pp. 1–7. IEEE Press (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jezreel Mejía .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quiñonez, Y., Zatarain, O., Lizarraga, C., Mejía, J. (2021). Proposal for a New Method to Improve the Trajectory Generation of a Robotic Arm Using a Distribution Function. In: Mejia, J., Muñoz, M., Rocha, Á., Quiñonez, Y. (eds) New Perspectives in Software Engineering. CIMPS 2020. Advances in Intelligent Systems and Computing, vol 1297. Springer, Cham. https://doi.org/10.1007/978-3-030-63329-5_15

Download citation

Publish with us

Policies and ethics