Skip to main content

Parametric Methods and Algorithms of Volcano Image Processing

  • 371 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1295)

Abstract

A key problem of any video volcano surveillance network is an inconsistent quality and information value of the images obtained. To timely analyze the incoming data, they should be pre-filtered. Additionally, due to the continuous network operation and low shooting intervals, an operative visual analysis of the shots stream is quite difficult and requires the application of various computer algorithms. The article considers the parametric algorithms of image analysis developed by the authors for processing the shots of the volcanoes of Kamchatka. They allow automatically filtering the image flow generated by the surveillance network, highlighting those significant shots that will be further analyzed by volcanologists. A retrospective processing of the full image archive with the methods suggested helps to get a data set, labeled with different classes, for future neural network training.

Keywords

  • Image
  • Algorithm
  • Information system
  • Volcano

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-63319-6_22
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-63319-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

References

  1. Girina, O.A., Gordeev, E.I.: KVERT project: reduction of volcanic hazards for aviation from explosive eruptions of Kamchatka and Northern Kuriles volcanoes. Vestnik FEB RAS 132(2), 100–109 (2007)

    Google Scholar 

  2. Gordeev, E.I., Girina, O.A., Loupian E.A., Sorokin, A.A., Kramareva, L.S., Efremov, V.Yu., Kashnitskii, A.V., Uvarov, I.A., Burtsev, M.A., Romanova, I.M., Melnikov, D.V., Manevich, A.G., Korolev, S.P., Verkhoturov, A.L.: The VolSatView information system for monitoring the volcanic activity in Kamchatka and on the Kuril Islands. J. Volcanol. Seismolog. 10(6), 382–394 (2016). https://doi.org/10.1134/S074204631606004X

  3. Sorokin, A.A., Korolev, S.P., Malkovsky, S.I.: The signal automated information system: research and operational monitoring of dangerous natural phenomena in the Russian Far East. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 16(3), 238–248 (2019). https://doi.org/10.21046/2070-7401-2019-16-3-238-248

  4. Malkovsky, S.I., Sorokin, A.A., Girina, O.A.: Development of an information system for numerical modelling of the propagation of volcanic ash from Kamchatka and Kuril volcanoes. Comput. Technol. 24(6), 79–89 (2019). https://doi.org/10.25743/ICT.2019.24.6.010

  5. Ando, B., Pecora, E.: An advanced video-based system for monitoring active volcanoes. Comput. Geosci. 32(1), 85–91 (2006). https://doi.org/10.1016/j.cageo.2005.05.004

    CrossRef  Google Scholar 

  6. Viteri, F., Barrera, K., Cruz, C., Mendoza, D.: Using computer vision techniques to generate embedded systems for monitoring volcanoes in Ecuador with trajectory determination. J. Eng. Appl. Sci. 13(3), 3164–3168 (2018). https://doi.org/10.3923/jeasci.2018.3164.3168

    CrossRef  Google Scholar 

  7. Rabal, H.J., Braga, J.R.A.: Dynamic Laser Speckle and Applications. CRC Press, Boca Raton (2009)

    Google Scholar 

  8. Kramareva, L.S., Andreev, A.I., Bloshchinskiy, V.D., Kuchma, M.O., Davidenko, A.N., Pustatintsev, I.N., Shamilova, Y.A., Kholodov, E.I., Korolev, S.P.: The use of neural networks in hydrometeorology problems. Comput. Technol. 24(6), 50–59 (2019). https://doi.org/10.25743/ICT.2019.24.6.007

  9. Sorokin, A., Korolev, S., Romanova, I., Girina, O., Urmanov, I.: The Kamchatka volcano video monitoring system. In: Proceedings of 2016 6th International Workshop on Computer Science and Engineering (WCSE 2016), pp. 734–737. The Science and Engineering Institute, LA, CA, USA (2016)

    Google Scholar 

  10. Kamaev, A.N., Urmanov, I.P., Sorokin, A.A., Karmanov, D.A., Korolev, S.P.: Images analysis for automatic volcano visibility estimation. Comput. Opt. 42(1), 128–140 (2018). https://doi.org/10.18287/2412-6179-2018-42-1-128-140. (in Russian)

  11. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    CrossRef  Google Scholar 

  12. Urmanov, I., Kamaev, A., Sorokin, A.: Computer methods of image processing of volcanoes. In: Proceedings of the IV International Research Conference “Information Technologies in Science, Management, Social Sphere and Medicine” (ITSMSSM 2017), vol. 72, pp. 371–374. Atlantis Press, Paris (2017). https://doi.org/10.2991/itsmssm-17.2017.77

  13. Borgefors, G.: Distance transformations in digital images. CVGIP 34(3), 344–371 (1986). https://doi.org/10.1016/S0734-189X(86)80047-0

    CrossRef  Google Scholar 

  14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    CrossRef  Google Scholar 

  15. Shmilovici, A.: Support vector machines. In: Data Mining and Knowledge Discovery Handbook. Springer, Boston (2009). https://doi.org/10.1007/0-387-25465-X_12

  16. Schölkopf, B., Tsuda, K., Vert, J.P.: Kernel Methods in Computational Biology. MIT Press, Cambridge (2004)

    CrossRef  Google Scholar 

  17. Kamaev, A.N., Korolev, S.P., Sorokin, A.A., Urmanov, I.P.: Detection of thermal anomalies in the images of volcanoes taken at night. J. Comput. Syst. Sci. Int. 59(1), 95–104 (2019). https://doi.org/10.1134/S106423071906008X

    CrossRef  MATH  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR, project number 20-37-70008. Computations were performed with the methods and techniques developed under the RFBR, project number 18-29-03196.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Korolev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Korolev, S., Urmanov, I., Kamaev, A., Girina, O. (2020). Parametric Methods and Algorithms of Volcano Image Processing. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Software Engineering Perspectives in Intelligent Systems. CoMeSySo 2020. Advances in Intelligent Systems and Computing, vol 1295. Springer, Cham. https://doi.org/10.1007/978-3-030-63319-6_22

Download citation