Skip to main content

Heterostructure Simulation for Optoelectronic Devices Efficiency Improvement

  • Conference paper
  • First Online:
Software Engineering Perspectives in Intelligent Systems (CoMeSySo 2020)

Abstract

In this work nitride heterostructures were simulated for optoelectronic devices such as photodetectors (phototransistors) and solar cells for improving their efficiency. The influence of aluminium atoms and doping as well as temperature on AlGaN/GaN-based heterojunction phototransistors characteristics have been studied. The results suggest that the AlGaN/GaN phototransistor with the Al concentration – 28% and the doping concentration - Nd = 2 × 1015 cm−3 and Na = 2.1 × 1016 cm−3, exhibits a considerable sensitivity and the quantum efficiency approaching about 10%. Solar cells model based on GaN/Si heterostructure was created. The optimum heterostructure design and doping profile were defined. Quite high solar cell efficiencies based on n-GaN−p-Si heterostructures such as 14.35% at 1 · AM 1.5 and 21.10% at 1000 · AM 1.5 were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rabinovich, O., Saranin, D., Orlova, M., Yurchuk, S., Panichkin, A., Konovalov, M., Osipov, Yu., Didenko, S., Gostischev, P.: Heterostructure improvements of the solar cells based on perovskite. Procedia Manuf. 37C, 221–226 (2019)

    Article  Google Scholar 

  2. Wu, J., Walukiewicz, W., Yu, K., Shan, W., Ager, E., Haller, E., Hai, L., Schaff, W., Metzger, W., Kurtz, S.: Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system. J. Appl. Phys. 94(10), 6477–6482 (2003)

    Article  Google Scholar 

  3. Yamamoto, A., Islam, Md., Kang, T., Hashimoto, A.: Recent advances in InN-based solar cells: status and challenges in InGaN and InAlN solar cells. Physica Status Solidi (c) 7(5), 1309–1319 (2010)

    Article  Google Scholar 

  4. Fedorchenko, I., Kushkov, A., Gaev, A., Rabinovich, O., Marenkin, S., Didenko, S., Legotin, S., Orlova, M., Krasnov, A.: Growth method for AIIIBV and AIVBVI heterostructures. J. Cryst. Growth 483, 245–250 (2018)

    Article  Google Scholar 

  5. Aleksandrov, S., Zykov, V.: Electric and photoelectric properties of n-GaxIn1−xN/p-Si anisotypic heterojunctions. Semiconductor 32(4), 412–416 (1998)

    Article  Google Scholar 

  6. Kenichi, S., Hashimoto, A., Yamamoto, A.: InGaN solar cells: present state of the art and important challenges. IEEE J. Photovoltaics 2(3), 276–293 (2012)

    Article  Google Scholar 

  7. Dahal, R., Li, J., Aryal, K., Lin, J., Jiang, H.: InGaN/GaN multiple quantum well concentrator solar cells. Appl. Phys. Lett. 97, 0731151–0731155 (2010)

    Google Scholar 

  8. Routray, S., Lenka, R.: Heterostructures improvement. CSIT 35, 21–27 (2009)

    Google Scholar 

  9. Akmak, H., Engin, A., Rudzin, P., Demirel, H., Unalan, W., Strupin, R., Turan, M.: Effects of filler shape and size on the properties of silver filled epoxy composite for electronic applications. J. Mater. Sci. Mater. Electron. 48, 56–63 (2011)

    Google Scholar 

  10. Rabinovich, O., Legotin, S., Didenko, S.: Impurity influence on nitride LEDs. J. Nano Electron. Phys. 6(3), 030021–030022 (2014)

    Google Scholar 

  11. Rabinovich, O.: InGaN and InGaP heterostructure simulation. J. Alloys Compound 586(1), S258–S261 (2014)

    Article  Google Scholar 

  12. Rabinovich, O., Legotin, S., Didenko, S., Yakimov, E., Osipov, Yu., Fedorchenko, I.: Heterostructure optimization for increasing LED efficiency. Jpn. J. Appl. Phys. 55, 05FJ131–05FJ134 (2016)

    Google Scholar 

  13. Rabinovich, O., Sushkov, V.: The study of specific features of working characteristics of multicomponent heterostructures and AlGaInN – based light-emitting diodes. Semiconductors 43(4), 524–527 (2009)

    Article  Google Scholar 

  14. Urchuk, S., Legotin, S., Osipov, Yu., Rabinovich, O.: Spectral sensitivity characteristics simulation for silicon p-i-n photodiode. J. Phys. Conf. Ser. 643, 01206811–01206815 (2015)

    Article  Google Scholar 

  15. Winston, D.: Physical Simulation of Optoelectronic Semiconductor Devices, 1st edn. Colorado University Press, Colorado (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Rabinovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rabinovich, O., Podgornaya, S. (2020). Heterostructure Simulation for Optoelectronic Devices Efficiency Improvement. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Software Engineering Perspectives in Intelligent Systems. CoMeSySo 2020. Advances in Intelligent Systems and Computing, vol 1295. Springer, Cham. https://doi.org/10.1007/978-3-030-63319-6_12

Download citation

Publish with us

Policies and ethics