Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 322))

Abstract

Although the COVID-19 pandemic continues to expand, researchers around the world are working to understand, diminish, and curtail its spread. The primary fields of research include investigating transmission of COVID-19, promoting its identification, designing potential vaccines and therapies, and recognizing the pandemic’s socio-economic impacts. Deep Learning (DL), which uses either deep learning architectures or hierarchical approaches to learning, is developed a machine learning class since 2006. The exponential growth and availability of data and groundbreaking developments in hardware technology have led to the rise of new distributed and learning studies. Throughout this chapter, we discuss how deep learning can contribute to these goals by stepping up ongoing research activities, improving the efficiency and speed of existing methods, and proposing original lines of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fowler, P.: A chance to be our best. J. Pharm. Pract. Res. 50, 122–123 (2020). https://doi.org/10.1002/jppr.1655

    Article  Google Scholar 

  2. Xie, X., Muruato, A., Lokugamage, K., LeDuc, J., Menachery, V., Shi, P.: An Infectious cDNA Clone of SARS-CoV-2. Cell Host Microbe. Published (2020). https://doi.org/10.1016/j.chom.2020.04.004

    Article  Google Scholar 

  3. Di Gennaro, F., Pizzol, D., Marotta, C., Antunes, M., Racalbuto, V., Veronese, N., Smith, L.: Coronavirus diseases (COVID-19) current status and future perspectives: a narrative review. Int. J. Environ. Res. Public Health 17, 2690 (2020). https://doi.org/10.3390/ijerph17082690

    Article  Google Scholar 

  4. Adnan, M., Suliman, S., Kazmi, A., Bashir, N., Siddiquea, R.: COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 24, 91–98 (2020)

    Article  Google Scholar 

  5. Dargan, S., Kumar, M., Ayyagari, M.R., et al.: A survey of deep learning and its applications: a new paradigm to machine learning. Arch. Computat. Methods Eng. (2019). https://doi.org/10.1007/s11831-019-09344-w

  6. Ongsulee, P.: Artificial intelligence, machine learning and deep learning. In: 2017 15th International Conference on ICT and Knowledge Engineering, Bangkok, pp. 1–6 (2017). https://doi.org/10.1109/ICTKE.2017.8259629

  7. Loey, M., Smarandache, F., Eldeen, N., Khalifa, M.: Within the Lack of Chest COVID-19 X-ray Dataset: A Novel Detection Model Based on GAN and Deep Transfer Learning. preprint

    Google Scholar 

  8. Bruns, D., Kraguljac, N., Bruns, T.: COVID-19: facts, cultural considerations, and risk of stigmatization. J. Transcultural Nurs., pp. 1–7. https://doi.org/10.1177/1043659620917724

  9. Gandhi, R.T., Lynch, J.B., del Rio, C.: Mild or moderate Covid-19. N. Engl. J. Med. (2020). https://doi.org/10.1056/NEJMcp2009249

    Article  Google Scholar 

  10. Dai, X.: ABO blood group predisposes to COVID-19 severity and cardiovascular diseases. Eur. J. Prev. Cardiol. The European Society of Cardiology 2020. Article reuse guidelines: sagepub.com/journals-permissions. https://doi.org/10.1177/2047487320922370

  11. Bhattacharyya, S., Maulik, U., DuttaQuantum: Inspired computational intelligence. Res. Appl., -33-83 (2017). ISBN: 978-0-12-804409-4. https://doi.org/10.1016/C2015-0-01859-7

  12. Palm, G., McCulloch, W., Pitts, W.: A Logical Calculus of the Ideas Immanent in Nervous Activity, pp. 229–230. Springer, Berlin, Heidelberg (1986). ISBN 978-3-642-70911-1

    Book  Google Scholar 

  13. Linnainmaa, S.: The Representation of the Cumulative Rounding Error of an Algorithm as a Taylor Expansion of the Local Rounding Errors, (In Finnish). Master’s Thesis, Department of Computer Science, University of Helsinki, Helsinki, Finland (1970)

    Google Scholar 

  14. Ivakhnenko, A.G.: Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybern. MC-1 4, 364–378 (1971)

    Google Scholar 

  15. Werbos, P.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990). https://doi.org/10.1109/5.58337

    Article  Google Scholar 

  16. Olivier, D., Bengio, Y.: Shallow vs. deep sum-product networks. In: Advances in Neural Information Processing Systems, vol. 24, pp. 666–674 (2011)

    Google Scholar 

  17. Weng, J., Ahuja, N., Huang, T.: Cresceptron: a self-organizing neural network which grows adaptively. International Joint Conference on Neural Networks (IJCNN) 1, 576–581 (1992)

    Article  Google Scholar 

  18. Williams, T., Li, R.: Wavelet Pooling for Convolutional Neural Networks. Published as a conference paper at ICLR 2018

    Google Scholar 

  19. Weng, J., Ahuja, N., Huang, T.S.: Learning recognition and segmentation using the cresceptron. Int. J. Comput. Vis. 25, 109–143 (1997). https://doi.org/10.1023/A:1007967800668

    Article  Google Scholar 

  20. Freund, Y., Haussler, D.: Unsupervised Learning of Distributions on Binary Vectors Using Two Layer Networks. Technical Report UCSC-CRL-94-25. University of California, Santa Cruz (1994)

    Google Scholar 

  21. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative Adversarial Nets

    Google Scholar 

  22. Segmentation of neuronal structures in EM stacks challenge. In: IEEE International symposium on biomedical imaging. http://tinyurl.com/d2fgh7g (2012)

  23. Ciresan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems (NIPS), pp. 2852–2860 (2012)

    Google Scholar 

  24. Traian, T.: NVIDIA Tegra Inside Every Audi 2010 Vehicle. Retrieved 2016-08-03 from http://news.softpedia.com/news/NVIDIATegra-Inside-Every-Audi-2010-Vehicle-131529.shtml

  25. Nayyar, Z.: Feature Engineering in Machine Learning (2015). https://doi.org/10.13140/RG.2.1.3564.3367

  26. Huang, J., Dong, Q., Gong, S., Zhu, X.: Unsupervised Deep Learning by Neighbourhood Discovery

    Google Scholar 

  27. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 1–18 (2018)

    Google Scholar 

  28. Dizaji, K.G., Herandi, A., Deng, C., Cai, W., and Huang, H. Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 5747–5756 (2017)

    Google Scholar 

  29. Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: Simultaneous deep learning and clustering. In: Proceedings of the International Conference on machine learning (ICML), pp. 1–14 (2017)

    Google Scholar 

  30. Zhang, R., Isola, P., Efros, A.: Split-brain autoencoders: unsupervised learning by cross-channel prediction. In:The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1058–1067 (2017)

    Google Scholar 

  31. Wu, Z., Xiong, Y., Stella, X., Lin, Y.: Unsupervised feature learning via non-parametric instance discrimination. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3733–3742 (2018)

    Google Scholar 

  32. Nair, V., Alonso, J., Beltramell, T.: RealMix: Towards Realistic Semi-Supervised Deep Learning Algorithms (2019)

    Google Scholar 

  33. Kingma, D., Rezende, D., Mohamed, S., Welling, M.: Semi-supervised learning with deep generative models. Proceedings of Advances in Neural Information Processing Systems 27, 3581–3589 (2014)

    Google Scholar 

  34. Lavet, V., Henderson, P., Islam, R., Bellemare, M., Pineau, J.: An Introduction to Deep Reinforcement Learning (2018). arXiv:1811.12560v2

  35. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: 31st Conference on Neural Information Processing Systems (2017)

    Google Scholar 

  36. Arif, W.M., Ahmed, B., Saduf, A., Iqbal, K.: Advances in Deep Learning: Basics of Supervised Deep Learning. Springer, Singapore, pp. 13–29 (2020). https://doi.org/10.1007/978-981-13-6794-6-2

  37. Wang, H., Hiksha, B.: On the Origin of Deep Learning (2017). arXiv:1702.07800v4 [cs.LG]

  38. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  39. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  40. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel Distributed Processing. Vol. 1: Foundations. MIT Press, Cambridge, MA (1986)

    Google Scholar 

  41. Yuan, F.N., Zhang, L., Shi, L., Xia, J.T., Li, X.: Theories and applications of auto-encoder neural networks: a literature survey. Chin. J. Comput. 42, 203–230 (2019). https://doi.org/10.11897/SP.J.1016.2019.00203

  42. Jiang, P., Maghrebi, M., Crosky, A., Saydam, S.: Unsupervised deep learning for data-driven reliability and risk analysis of engineered systems. In: Handbook of Neural Computation, pp. 417–431 (2017)

    Google Scholar 

  43. Baldi, P., Hornik, K.: Neural networks and principal component analysis: Learning from examples without local minima. Neural Netw. 2(1), 53–58 (1989)

    Article  Google Scholar 

  44. Japkowicz, N., Hanson, S.J., Gluck, M.A.: Nonlinear autoassociation is not equivalent to pca. Neural Comput. 12(3), 531–545 (2000)

    Article  Google Scholar 

  45. Deng, J., Zhang, Z., Marchi, E., Schuller, B.: Sparse autoencoder-based feature transfer learning for speech emotion recognition. In: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction (ACII). IEEE, pp. 511–516 (2013)

    Google Scholar 

  46. Vincent, P., Larochelle, H., Bengio, Y., Manzago, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning. ACM, pp. 1096–1103 (2008)

    Google Scholar 

  47. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 833–840 (2008)

    Google Scholar 

  48. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  49. Wang, W., Huang, Y., Wang, A., Wang, L.: Generalized autoencoder: a neural network framework for dimensionality reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 490–497 (2014)

    Google Scholar 

  50. Wen, Y., Lie, X., Gonzalez, J.: Fast training of deep LSTM networks. Springer International Publishing, pp. 3–10 (2019) Isbn: 978-3-030-22796-8

    Google Scholar 

  51. Pang, B., Zha, K., Cao, H., Shi, C., Lu, C.: Deep RNN Framework for Visual Sequential Applications, pp. 423–432 (2018)

    Google Scholar 

  52. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  53. Sja, F., Christian, I.: An Introduction to Restricted Boltzmann Machines, pp. 14–36 (2012). https://doi.org/10.1007/978-3-642-33275-3-2

  54. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Aaron, C., Bengio, Y.: Generative Adversarial Nets. NIPS preceding (2014)

    Google Scholar 

  55. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  56. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: JMLR: Workshop Workshop on Unsupervised and Transfer Learning, pp. 27–37 (2012)

    Google Scholar 

  57. Meng, Q., Catchpooley, D., Skillicornz, D., Kennedy, P.J.: Relational Autoencoder for Feature Extraction (2018). arXiv: 1802.03145v1 [cs.LG]

  58. Pascanu, R., Gulcehre, C., Cho, K., Bengio, Y.: How to Construct Deep Recurrent Neural Networks (2014). arXiv:1312.6026v5 [cs.NE]

  59. Hermans, M., Schrauwen, B.: Training and analyzing deep recurrent neural networks. Advances in Neural Information Processing Systems 26, 190–198 (2013)

    Google Scholar 

  60. Mikami, A.: Long Short-Term Memory Recurrent Neural Network Architectures for Generating Music and Japanese Lyrics. Ph.D, Computer Science Department, Boston College (2016)

    Google Scholar 

  61. Suk, H.: Deep Learning for Medical Image Analysis (2017). https://doi.org/10.1016/B978-0-12-810408-8.00002-X

    Article  Google Scholar 

  62. Salakhutdinov, R., Hinton, G.: Deep Boltzmann Machines. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS), Clearwater Beach, Florida, USA (2009). Volume 5 of JMLR: W-CP 5

    Google Scholar 

  63. Khan, A., Zameer, A., Jamal, T., Raza, A.: Deep Belief Networks Based Feature Generation and Regression for Predicting Wind Power (2018). arXiv:1807.11682

  64. Karhunen, J., Raiko, T., Cho, K.: Deep learning: a short review. In: Advances in Independent Component Analysis and Learning Machines (2015). http://dx.doi.org/10.1016/B978-0-12-802806-3.00007-5

  65. Punn, N., Sonbhadra, S., Agarwal, S.: COVID-19 Epidemic Analysis using Machine Learning and Deep Learning Algorithms. Display the preprint in perpetuity. medRxiv preprint. https://doi.org/10.1101/2020.04.08.20057679. This version posted 11 Apr 2020

  66. Alom, M., Rahman, M., Nasrin, M., Taha, M., Asari, K.: COVID-MTNet: COVID-19 Detection with Multi-Task Deep Learning Approaches (2020)

    Google Scholar 

  67. Ozturka, T., Talob, M., Yildirimc, E., Baloglud, U., Yildirime, O., Acharyaf, U.: Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. https://doi.org/10.1016/j.compbiomed.2020.103792

  68. Hurt, B., Kligerman, S., Hsiao, A.: Deep learning localization of pneumonia: 2019 coronavirus (COVID-19) outbreak. J. Thorac. Imaging 35(3), W87–W89 (2020)

    Article  Google Scholar 

  69. Shadab, S., Alam Khan, T., Afrin Neezi, N., Adilina, S., Shatabda, S.: DeepDBP: Deep Neural Networks for Identification of DNA-binding Proteins. https://doi.org/10.1101/829432

  70. Bartoszewicz, J.M., Seidel, A., Renard, B.Y.: Interpretable Detection of Novel Human Viruses from Genome Sequencing Data (2020). https://doi.org/10.1101/2020.01.29.925354

    Article  Google Scholar 

  71. Ayyoubzadeh, S.M., Ayyoubzadeh, S.M., Zahedi, H., Ahmadi, M., Kalhori, S.R.: Predicting COVID-19 incidence through analysis of google trends data in iran: data mining and deep learning pilot study. JMIR Public Health Surveill. 6(2), e18828 (2020). https://doi.org/10.2196/18828

    Article  Google Scholar 

  72. Lin, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J.: Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology, p. 200905 (2020). https://doi.org/10.1148/radiol.2020200905

  73. Linda, W., Wong, A.: COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest Radiography Images (2020). arXiv preprint arXiv:2003.09871

  74. Chuansheng, Z., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., Liu, W., Wang, X.: Deep Learning-based Detection for COVID-19 from Chest CT using Weak Label. medRxiv (2020)

    Google Scholar 

  75. Xiaowei, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., Yu, L.: Deep Learning System to Screen Coronavirus Disease 2019 Pneumonia (2020). arXiv preprint . arXiv:2002.09334

  76. Sethy, P.K., Behera, S.K.: Detection of Coronavirus Disease (COVID-19) Based on Deep Features (2020)

    Google Scholar 

  77. Zhang, H., Saravanan, K.M., Yang, Y., Hossain, M.T., Li, J., Ren, X., Wei, Y.: Deep Learning Based Drug Screening for Novel Coronavirus 2019-nCov (2020). Preprints 2020, 2020020061. https://doi.org/10.20944/preprints202002.0061.v1

  78. Computational predictions of protein structures associated with COVID-19. https://deepmind.com/research/open-source/computational-predictions-of-protein-structures-associated-with-COVID-19

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Soliman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soliman, M., Darwish, A., Hassanien, A.E. (2021). Deep Learning Technology for Tackling COVID-19 Pandemic. In: Hassanien, A.E., Darwish, A. (eds) Digital Transformation and Emerging Technologies for Fighting COVID-19 Pandemic: Innovative Approaches. Studies in Systems, Decision and Control, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-030-63307-3_9

Download citation

Publish with us

Policies and ethics