Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 271 Accesses

Abstract

The simulation of large, coupled, multiphysical problems typically poses considerable challenges. Their multiphysical character frequently involves the coupling of systems of equations with different mathematical properties, time rates and sizes, whose coupled solution has to be numerically approximated together with one method. Furthermore, especially when considering space-discretised models, each subsystems can become very large and computationally costly to solve. In this chapter two time domain simulation algorithms are presented that can be applied to field-circuit coupled systems. This includes co-simulation techniques (in particular the waveform relaxation method) that can be used to exploit the different mathematical properties of the systems. Also, to further speed up the computation time, the parallel-in-time method Parareal is presented and adapted to the case of differential-algebraic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The choice of coupling the magnetic and thermal systems monolithically is not mandatory. However, in the LHC quench protection circuit examples simulated within STEAM both systems are implemented within the same software (COMSOL) and thus solving them together is the intuitive option.

  2. 2.

    InitDAE is a package for Python that is able to numerically compute the system’s index and consistent initial conditions https://www.mathematik.hu-berlin.de/~lamour/software/python/InitDAE/html/index.html.

References

  1. Bortot L, Auchmann B, Cortes Garcia I et al (2018) STEAM: a hierarchical co-simulation framework for superconducting accelerator magnet circuits. IEEE Trans Appl Super 28(3)

    Google Scholar 

  2. Lelarasmee E, Ruehli AE, Sangiovanni-Vincentelli AL (1982) The waveform relaxation method for timedomain analysis of large scale integrated circuits. IEEE Trans Comput Aided Des Integrated Circ Syst 1(3):131–145

    Article  Google Scholar 

  3. Bichet F, Chombart P, Relovsky B (2010) Functional mock-up interface for co-simulation. Technical Report, MODELISAR consortium

    Google Scholar 

  4. Zhou P, Lin D, Fu WN, Ionescu B, Cendes ZJ (2006) A general co-simulation approach for coupled field-circuit problems. IEEE Trans Magn 42(4):1051–1054

    Article  Google Scholar 

  5. Lions J-L, Maday Y, Turinici G (2001) A parareal in time discretization of PDEs. Comptes Rendus l’Acad Sci Ser I Math 332(7):661–668

    MATH  Google Scholar 

  6. Cortes Garcia I, Schöps S, Bortot L et al (2017) Optimized field/circuit coupling for the simulation of quenches in superconducting magnets. IEEE J Multiscale Multiphys Comput Tech 2(1):97–104. arXiv:1702.00958

  7. Cortes Garcia I, Kulchytska-Ruchka I, Schöps S (2020) Efficient simulation of field/circuit coupled systems with parallelized waveform relaxation. IEEE Trans Magn 56(2):1–4

    Article  Google Scholar 

  8. Nataf F (2007) Recent developments on optimized Schwarz methods. In: Widlund OB, Keyes DE (eds) Domain decomposition methods in science and engineering XVI. Springer, Berlin, Heidelberg, pp 115–125

    Chapter  Google Scholar 

  9. Gander MJ, Halpern L (2007) Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J Numer Anal 45(2):666–697

    Article  MathSciNet  MATH  Google Scholar 

  10. Legoll F, Lelivre T, Samaey G (2013) A micro-macro parareal algorithm: application to singularly perturbed ordinary differential equations. SIAM J Sci Comput 35(4):A1951–A1986

    Article  MathSciNet  MATH  Google Scholar 

  11. Tsukerman IA (1995) A stability paradox for time-stepping schemes in coupled field-circuit problems. IEEE Trans Magn 31(3):1857–1860

    Article  Google Scholar 

  12. Dreher T, Meunier G (1995) 3d line current model of coils and external circuits. IEEE Trans Magn 31(3):1853–1856

    Article  Google Scholar 

  13. Bedrosian G (1993) A new method for coupling finite element field solutions with external circuits and kinematics. IEEE Trans Magn 29(2):1664–1668

    Article  Google Scholar 

  14. Lange E, Henrotte F, Hameyer K (2009) An efficient field-circuit coupling based on a temporary linearization of FE electrical machine models. IEEE Trans Magn 45(3):1258–1261

    Article  Google Scholar 

  15. Lelarasmee E (1982) The waveform relaxation method for time domain analysis of large scale integrated circuits: theory and applications. PhD thesis, EECS Department, University of California, Berkeley

    Google Scholar 

  16. Arnold M, Gather M (2001) Preconditioned dynamic iteration for coupled differential-algebraic systems. BIT 41(1):1–25

    Article  MathSciNet  Google Scholar 

  17. Bartel A, Brunk M, Schöps S (2014) On the convergence rate of dynamic iteration for coupled problems with multiple subsystems. J Comput Appl Math 262:14–24

    Article  MathSciNet  MATH  Google Scholar 

  18. Schöps S, De Gersem H, Bartel A (2010) A cosimulation framework for multirate time-integration of field/circuit coupled problems. IEEE Trans Magn 46(8):3233–3236

    Article  Google Scholar 

  19. Maciejewski M, Cortes Garcia I, Schöps S et al (2017) Application of the waveform relaxation technique to the co-simulation of power converter controller and electrical circuit models. In: 2017 22nd international conference on methods and models in automation and robotics (MMAR). IEEE, pp 837–842. arXiv:1704.02839

  20. Gander MJ, Ruehli AE (2004) Optimized waveform relaxation methods for RC type circuits. IEEE Trans Circ Syst 51(4):755–768

    Article  MathSciNet  MATH  Google Scholar 

  21. Gander M, Ruehli A (2010) Optimized waveform relaxation solution of electromagnetic and circuit problems. In: 19th conference on electrical performance of electronic packaging and systems (EPEPS), pp 65–68

    Google Scholar 

  22. Al-Khaleel M, Gander MJ, Ruehli AE (2014) Optimization of transmission conditions in waveform relaxation techniques for RC circuits. SIAM J Numer Anal 52(2):1076–1101

    Article  MathSciNet  MATH  Google Scholar 

  23. Al-Khaleel M, Gander MJ, Ruehli AE (2014) A mathematical analysis of optimized waveform relaxation for a small RC circuit. APNUM 75:61–76

    MathSciNet  MATH  Google Scholar 

  24. Nshimiyimana JdD, Plumier F, Dular P, Geuzaine C (2016) Co-simulation of of finite element and circuit solvers using optimized waveform relaxation. In: IEEE international energy conference (ENERGYCON), pp 1–6

    Google Scholar 

  25. Schierz T, Arnold M, Clau C (2012) Co-simulation with communication step size control in an FMI compatible master algorithm. In: Proceedings of the 9th international modelica conference, Munich, Germany, Sept 2012

    Google Scholar 

  26. Miekkala U, Nevanlinna O (1987) Convergence of dynamic iteration methods for initial value problems. SIAM J Sci Stat Comput 8:459–482

    Article  MathSciNet  MATH  Google Scholar 

  27. White JK, Odeh F, Sangiovanni-Vincentelli AL, Ruehli AE (1985) Waveform relaxation: theory and practice. Trans Soc Comput Simul 2(1):95–133

    Google Scholar 

  28. Burrage K (1995) Parallel and sequential methods for ordinary differential equations. Oxford University Press, Oxford

    MATH  Google Scholar 

  29. Jackiewicz Z, Kwapisz M (1996) Convergence of waveform relaxation methods for differential-algebraic systems. SIAM J Numer Anal 33(6):2303–2317

    Article  MathSciNet  MATH  Google Scholar 

  30. Schöps S, De Gersem H, Bartel A (2012) Higher-order cosimulation of field/circuit coupled problems. IEEE Trans Magn 48(2):535–538

    Article  MATH  Google Scholar 

  31. Bartel A, Brunk M, Gather M, Schöps S (2013) Dynamic iteration for coupled problems of electric circuits and distributed devices. SIAM J Sci Comput 35(2):B315–B335

    Article  MathSciNet  MATH  Google Scholar 

  32. Pade J, Tischendorf C (2018) Waveform relaxation: a convergence criterion for differential-algebraic equations. Numer Algorithm

    Google Scholar 

  33. Cortes Garcia I, Pade J, Schöps S, Tischendorf C (2020) Waveform relaxation for low frequency coupled field/circuit differential-algebraic models of index 2. In: 13th international conference on scientific computing in electrical engineering, 2020, accepted

    Google Scholar 

  34. Gander MJ, Vanzan T (2019) Heterogeneous optimized schwarz methods for second order elliptic pdes. SIAM J Sci Comput 41(4):A2329–A2354. https://doi.org/10.1137/18M122114X

  35. Bortot L, Auchmann B, Cortes Garcia I et al (2020) A coupled A-H formulation for magneto-thermal transients in high-temperature superconducting magnets. IEEE Trans Appl Superconduct 30:1–11. arXiv:1909.03312

  36. Schöps S (2011) Multiscale modeling and multirate time-integration of field/circuit coupled problems. VDI Verlag. Fortschritt-Berichte VDI, Reihe 21, Dissertation, Bergische Universität Wuppertal & Katholieke Universiteit Leuven, Dsseldorf, Germany, May 2011

    Google Scholar 

  37. Tischendorf C (1999) Topological index calculation of differential-algebraic equations in circuit simulation. Surv Math Ind 8(3–4):187–199

    MathSciNet  MATH  Google Scholar 

  38. Verweij AP (1995) Electrodynamics of superconducting cables in accelerator magnets. PhD thesis, Universiteit Twente, Twente, The Netherlands

    Google Scholar 

  39. Ravaioli E (2015) CLIQ: a new quench protection technology for superconducting magnets. PhD thesis, University of Twente

    Google Scholar 

  40. Amann H, Escher J (2006) Analysis 2, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  41. Römer U (2015) Numerical approximation of the magnetoquasistatic model with uncertainties and its application to magnet design. Dissertation, Technische Universität Darmstadt

    Google Scholar 

  42. Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations. Numerical mathematics and scientific computation. Oxford University Press, Oxford

    Google Scholar 

  43. Gander MJ, Kulchytska-Ruchka I, Schöps S (2019) A new parareal algorithm for time-periodic problems with discontinuous inputs. In: Domain decomposition methods in science and engineering XXV. Lecture notes in computational science and engineering. arXiv:1810.12372, accepted

  44. Schöps S, Niyonzima I, Clemens M (2018) Parallel-in-time simulation of eddy current problems using parareal. IEEE Trans Magn 54(3):1–4. arXiv:1706.05750

  45. Nievergelt J (1964) Parallel methods for integrating ordinary differential equations. Comm ACM 7:731–733

    Article  MathSciNet  MATH  Google Scholar 

  46. Gander MJ, Vandewalle S (2007) On the superlinear and linear convergence of the parareal algorithm. In: Domain decomposition methods in science and engineering XVI. Lecture notes in computational science and engineering, vol 55, Springer, Berlin, pp 291–298

    Google Scholar 

  47. Gander MJ, Hairer E (2008) Nonlinear convergence analysis for the parareal algorithm. In: Langer U, Discacciati M, Keyes DE, Widlund OB, Zulehner W (eds) Domain decomposition methods in science and engineering XVII. Springer, Berlin, Heidelberg, pp 45–56

    Chapter  Google Scholar 

  48. Bast D, Kulchytska-Ruchka I, Schöps S, Rain O (2020) Accelerated steady-state torque computation for induction machines using parallel-in-time algorithms. IEEE Trans Magn 56(2):1–9

    Article  Google Scholar 

  49. Gander MJ, Vandewalle S (2007) Analysis of the parareal time-parallel time-integration method. SIAM J Sci Comput 29(2):556–578. https://doi.org/10.1137/05064607X

    Article  MathSciNet  MATH  Google Scholar 

  50. Gander MJ, Kulchytska-Ruchka I, Niyonzima I, Schöps S (2019) A new parareal algorithm for problems with discontinuous sources. SIAM J Sci Comput 41(2):B375–B395. arXiv:1803.05503

  51. Maday Y, Salomon J, Turinici G (2007) Monotonic parareal control for quantum systems. SIAM J Math Anal 45(6):2468–2482

    MathSciNet  MATH  Google Scholar 

  52. Cadeau T, Magoules F (2011) Coupling the parareal algorithm with the waveform relaxation method for the solution of differential algebraic equations. In: 10th international symposium on distributed computing and applications to business, engineering and science, Oct 2011, pp 15–19

    Google Scholar 

  53. Lamour R (1994) A shooting method for fully implicit index-2 differential-algebraic equations. Humboldt Universität Berlin

    Google Scholar 

  54. Lamour R (1997) A shooting method for fully implicit index-2 differential algebraic equations. SIAM J Sci Comput 18(1):94–114

    Article  MathSciNet  MATH  Google Scholar 

  55. Estévez Schwarz D (2000) Consistent initialization for index-2 differential algebraic equations and its application to circuit simulation. PhD thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II

    Google Scholar 

  56. Estévez Schwarz D, Lamour R (2018) A new approach for computing consistent initial values and taylor coefficients for daes using projector-based constrained optimization. Numer Algorithms 78(2):355–377

    Article  MathSciNet  MATH  Google Scholar 

  57. Baumanns S (2012) Coupled electromagnetic field/circuit simulation: modeling and numerical analysis. PhD thesis, Universität zu Köln, Köln

    Google Scholar 

  58. Estévez Schwarz D, Tischendorf C (2000) Structural analysis of electric circuits and consequences for MNA. Int J Circ Theor Appl 28(2):131–162

    Article  MATH  Google Scholar 

  59. Liu J, Jiang Y-L (2012) A parareal algorithm based on waveform relaxation. Math Comput Simul 82(11):2167–2181

    Article  MathSciNet  MATH  Google Scholar 

  60. Gander MJ, Jiang Y-L, Li R-J (2013) Parareal schwarz waveform relaxation methods. In: Widlund OB, Holst M, Xu J (eds) Domain decomposition methods in science and engineering XX. Springer, Berlin, Heidelberg, pp 451–458

    Chapter  Google Scholar 

  61. Song B, Jiang Y-L (2014) Analysis of a new parareal algorithm based on waveform relaxation method for time-periodic problems. Numer Algorithm 67(3):599–622

    Article  MathSciNet  MATH  Google Scholar 

  62. Gyselinck J, Vandevelde L, Melkebeek J et al (1999) Calculation of eddy currents and associated losses in electrical steel laminations. IEEE Trans Magn 35(3):1191–1194

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idoia Cortes Garcia .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cortes Garcia, I. (2021). Iterative Methods in Time Domain. In: Mathematical Analysis and Simulation of Field Models in Accelerator Circuits. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-63273-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63273-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63272-4

  • Online ISBN: 978-3-030-63273-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics