Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 249 Accesses

Abstract

The time dependent systems of equations obtained in most simulation settings of this work are systems of differential algebraic equations. These systems can be classified according to their index. Systems with higher index require special numerical treatment. Therefore, when dealing with (coupled) systems of differential algebraic equations, a priori knowledge about their index allows to properly handle their simulation. This chapter presents three generalised elements definitions as well as the index analysis of the system of equations arising from circuits (modified nodal analysis) containing the generalised elements. For each one of the definitions, examples arising from different approximations of Maxwell’s equations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Estévez Schwarz D, Tischendorf C (2000) Structural analysis of electric circuits and consequences for MNA. Int J Circ Theor Appl 28(2):131–162

    Google Scholar 

  2. Costa MC, Nabeta SI, Cardoso JR (2000) Modified nodal analysis applied to electric circuits coupled with FEM in the simulation of a universal motor. IEEE Trans Magn 36(4):1431–1434

    Google Scholar 

  3. Tsukerman IA, Konrad A, Meunier G, Sabonnadiére JC (1993) Coupled field-circuit problems: trends and accomplishments. IEEE Trans Magn 29(2):1701–1704

    Google Scholar 

  4. Bedrosian G (1993) A new method for coupling finite element field solutions with external circuits and kinematics. IEEE Trans Magn 29(2):1664–1668

    Google Scholar 

  5. Günther M (2000) A joint DAE/PDE model for interconnected electrical networks. Math Model Syst 1(1):000–111

    Google Scholar 

  6. Potter PG, Cambrell GK (1983) A combined finite element and loop analysis for nonlinearly interacting magnetic fields and circuits. IEEE Trans Magn 19(6):2352–2355

    Google Scholar 

  7. Bortot L, Auchmann B, Cortes Garcia I et al (2018) STEAM: a hierarchical co-simulation framework for superconducting accelerator magnet circuits. IEEE Trans Appl Super 28(3)

    Google Scholar 

  8. Nicolet A, Delincé F (1996) Implicit Runge-Kutta methods for transient magnetic field computation. IEEE Trans Magn 32(3):1405–1408

    Google Scholar 

  9. Tsukerman IA (2002) Finite element differential-algebraic systems for eddy current problems. Numer Algorithm 31(1):319–335

    Google Scholar 

  10. Bartel A, Baumanns S, Schöps S (2011) Structural analysis of electrical circuits including magnetoquasistatic devices. APNUM 61:1257–1270

    Google Scholar 

  11. Alí G, Bartel A, Günther M, Tischendorf C (2003) Elliptic partial differential-algebraic multiphysics models in electrical network design. M3AS 13(9):1261–1278

    Google Scholar 

  12. Baumanns S, Clemens M, Schöps S (2013) Structural aspects of regularized full Maxwell electrodynamic potential formulations using FIT. In: Manara G (ed) Proceedings of 2013 URSI international symposium on electromagnetic theory (EMTS). IEEE, pp 1007–1010

    Google Scholar 

  13. Cortes Garcia I, De Gersem H, Schöps S (2019) A structural analysis of field/circuit coupled problems based on a generalised circuit element. Numer Algorithm 83:373–394. arXiv:1801.07081

  14. Cortes Garcia I, Schöps S, Strohm C, Tischendorf C (2020) Generalized elements for a structual analysis of circuits. In: Progress in differential-algebraic equations. arXiv:1912.05199, accepted

  15. Baumanns S, Selva Soto M, Tischendorf C, (2010) Consistent initialization for coupled circuit-device simulation. In: Roos J, Costa LRJ (eds) Scientific computing in electrical engineering SCEE, (2008) Mathematics in industry, vol 14. Springer, Berlin, pp 297–304

    Google Scholar 

  16. Estévez Schwarz D (2000) Consistent initialization for index-2 differential algebraic equations and its application to circuit simulation. PhD thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II

    Google Scholar 

  17. Clemens M (2005) Large systems of equations in a discrete electromagnetism: formulations and numerical algorithms. IEE Proc Sci Meas Tech 152(2):50–72

    Google Scholar 

  18. Clemens M, Weiland T (2002) Regularization of eddy-current formulations using discrete grad-div operators. IEEE Trans Magn 38(2):569–572

    Google Scholar 

  19. Clemens M, Weiland T (1999) Transient eddy-current calculation with the FI-method. IEEE Trans Magn 35(3):1163–1166

    Google Scholar 

  20. Albanese R, Rubinacci G (1988) Integral formulation for 3d eddy-current computation using edge elements. IEE Proc Sci Meas Tech 135(7):457–462

    Google Scholar 

  21. Munteanu I (2002) Tree-cotree condensation properties. ICS Newsletter (International Compumag Society) 9:10–14

    Google Scholar 

  22. Zhou P, Badics Z, Lin D, Cendes Z (2008) Nonlinear t-formulation including motion for multiply connected 3-d problems. IEEE Trans Magn 44(6)

    Google Scholar 

  23. De Gersem H, Munteanu I, Weiland T (2008) Construction of differential material matrices for the orthogonal finite-integration technique with nonlinear materials. IEEE Trans Magn 44(6):710–713

    Google Scholar 

  24. Schöps S (2011) Multiscale modeling and multirate time-integration of field/circuit coupled problems. VDI Verlag, Fortschritt-Berichte VDI, Reihe 21, Dissertation, Bergische Universität Wuppertal & Katholieke Universiteit Leuven, Düsseldorf, Germany, May 2011

    Google Scholar 

  25. Römer U (2015) Numerical approximation of the magnetoquasistatic model with uncertainties and its application to magnet design. Dissertation, Technische Universität Darmstadt

    Google Scholar 

  26. Cortes Garcia I, Schöps S, De Gersem H, Baumanns S (2019) Systems of differential algebraic equations in computational electromagnetics. In: Campbell Stephenand Ilchmann A, Mehrmann V, Reis T (eds) Applications of differential-algebraic equations: examples and benchmarks. Differential-algebraic equations forum. Springer, Heidelberg, pp 123–169

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idoia Cortes Garcia .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cortes Garcia, I. (2021). Structural Analysis of the Coupled Systems. In: Mathematical Analysis and Simulation of Field Models in Accelerator Circuits. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-63273-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63273-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63272-4

  • Online ISBN: 978-3-030-63273-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics