Skip to main content

Dynamic Bayesian Networks Application for Economy Competitiveness Situational Modelling

  • Conference paper
  • First Online:
Advances in Intelligent Systems and Computing V (CSIT 2020)

Abstract

In the research, a dynamic BN (DBN) was designed to assess general trends in the level of regional competitiveness depending on economic detectors. This dynamic model is built on the basis of a trained, already verified static Bayesian network for assessing the country’s competitiveness. In contradistinction to an approach based on entrance from a numerical model as an entrance to a static network to foretell the meanings ​​of key detectors, the presented DBN uses the observed meanings ​​of key detectors to foretell future meanings ​​of these detectors taking into account the time component. Sensitivity analysis of BN is carried out, as well as a comparative analysis of “what-if” taking into account time steps. During the development of this DBN, it was found that the more evidence there is, the higher the accuracy of the designed network. The study identified baseline conditions, under which the competition detector at subsequent time steps will tend to increase. It is shown that to achieve the maximum level of competitiveness, we need to ensure the pursuit of maximum investment and innovation performance and improve the overall economic situation of the country.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heckerman, D.E., Horvitz, E.J., Nathwani, B.N.: Toward normative expert systems: Part I. The Pathfinder project., Methods Inf. Med. 31, 90–105 (1992)

    Google Scholar 

  2. Yu, J., Smith, V., Wang, P., Hartemink, A., Jarvis, E.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20(18):3, 594–603 (2004)

    Google Scholar 

  3. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309–347 (1992)

    MATH  Google Scholar 

  4. Buntine, W.: Operations for learning with graphical models. J. Theor. Experimental Artif. Intell. 2, 159–225 (1994)

    Google Scholar 

  5. Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM monitoring system: a case study with two probabilistic inference techniques for belief networks, In: Proceedings of the Second European Conference on Artificial Intelligence in Medicine, London, England, pp. 247–256 (1989)

    Google Scholar 

  6. Kayaalp, M., Cooper, G.F.: A Bayesian Network Scoring Metric That Is Based on Globally Uniform Parameter Priors, pp. 251–258 (2002)

    Google Scholar 

  7. PC Algorithm [Electronic resource]. Access mode. http://download.hugin.com/webdocs/manuals/Htmlhelp/descr_PC_algorithm_pane.html

  8. Cheng, J., Druzdzel, M.J.: AIS-BN: an adaptive importance sampling algorithm for evidential reasoning in large bayesian networks. J. Artif. Intell. Res. (JAIR) 13, 155–188 (2000)

    Article  MathSciNet  Google Scholar 

  9. Friedman, N.: The Bayesian structural EM algorithm. In: Fourteenth conference on Uncertainty in Artificial Intelligence (UAI 1998), Madison, Wisconsin, USA, 24–26 July, SF.: Morgan Kaufmann, pp. 129–138 (1998)

    Google Scholar 

  10. Romanko, O., Voronenko, M., Savina, N., Zhorova, I., Wójcik, W., Lytvynenko, V.: The use of static bayesian networks for situational modeling of national economy competitiveness. In: IEEE International Conference on Advanced Trends in Information Theory (ATIT), pp. 501–505, Kyiv, Ukraine (2019). https://doi.org/10.1109/atit49449.2019.9030515

  11. Lytvynenko, V., Voronenko, M., Sitalo, S., Boskin, O., Lurie, I., Savina, N., Tanasiichuk, Y. Krugla, N.: Using a Bayesian Network to Assess the Atmospheric Pollution Influence on Immunological Parameters. In: 2nd International Workshop on Informatics & Data-Driven Medicine (IDDM 2019), Lviv, Ukraine, November 11–13, pp. 222–233 (2019). urn:nbn:de:0074-2488-2, http://www.ceur-ws.org/Vol-2488/

  12. Voronenko, M., Lurie, I., Boskin, O., Zhunissova, U., Baranenko, R., Lytvynenko, V.: Using bayesian methods for predicting the development of children Autism. In: IEEE International Conference on Advanced Trends in Information Theory (ATIT 2019), Kyiv, Ukraine, pp. 525–529 (2019). https://doi.org/10.1109/atit49449.2019.9030523

  13. Cobb, B.R., Shenoy, P.P.: A Comparison of Bayesian and Belief Function Reasoning. Working Paper No. 292, University of Kansas School of Business (2002). http://citeseer.ist.psu.edu/cobb02comparison.html

  14. Chickering, D., Heckerman, D.: Efficient approximations for the marginal likelihood of bayesian networks with hidden variables. Machine Learn. 29, 181–212 (1997)

    Article  Google Scholar 

  15. Tahboub, K.A.: Intelligent human-machine interaction based on dynamic bayesian networks probabilistic intention recognition. J. Intell. Robot. Syst. 45(1), 31–52 (2006)

    Article  Google Scholar 

  16. Agostinelli, C., Rotondi, R.: Using Bayesian belief networks to analyze the stochastic dependence between interevent time and size of earthquakes. J. Seismology 7, 281–299 (2003)

    Article  Google Scholar 

  17. Lytvynenko, V., Savina, N., Krejci, J., Fefelov, A., Lurie, I., Voronenko, M., Lopushynskyi, I., Vorona, P.: Dynamic bayesian networks in the problem of localizing the narcotic substances distribution, pp. 421–438. Springer, AISC 1080 (2019)

    Google Scholar 

  18. Robinson, R.W.: Counting unlabeled acyclic digraphs. In: Little, C.H.C. (ed.) Combinatorial Mathematics V. LNM, vol. 622, pp. 28–43. Springer, Heidelberg (1977). https://doi.org/10.1007/BFb0069178

    Chapter  Google Scholar 

  19. Smaili, C., Najjar, M.E., Charpillet, F.: Multi-sensor fusion method using dynamic bayesian network for precise vehicle localization and road matching. ICTAI 1, 146–151 (2007)

    Google Scholar 

  20. Kjærulff, U., van der Gaag, L.C.: Making sensitivity analysis computationally efficient. In: Uncertainty in Artificial Intelligence: Proceedings of the Sixteenth Conference (UAI-2000), pp. 317–325. San Francisco, CA: Morgan Kaufmann Publishers (2000)

    Google Scholar 

  21. Savina, N., Romanko, O., Gromaszek, K., Smailova, S.: Information technology for evaluation of innovation indicators influence and investment activity on competitiveness of the region. In: Proceedings SPIE. 11176, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (2019)

    Google Scholar 

  22. Fernandes, J.A., Lozano, J.A., Inza, I., Irigoien, X., Pйrez, A., Rodrнguez, J.D.: Supervised pre-procesing approaches in multiple class variables classification for fish recruitment forecasting. Environ. Modell. Software 40, 245–254 (2013)

    Article  Google Scholar 

  23. Uusitalo, L.: Advantages and challenges of Bayesian networks in environmental modelling. Ecol. Modell. 203, 312–318 (2007)

    Article  Google Scholar 

  24. Lauritzen, S.L.: Propagation of probabilities, means and variances in mixed graphical association models. J. Am. Stat. Assoc. 87, 1098–1108 (1992)

    Article  MathSciNet  Google Scholar 

  25. Leray, P., Francois, O.: BNT structure learning package: documentation and experiments. Technical report, laboratory PSI-INSA Rouen-FRE CNRS 2645, November 2004, p. 27 (1992)

    Google Scholar 

  26. Lytvynenko, V., Savina, N., Voronenko, M., Pashnina, A., Baranenko, R., Krugla, N., Lopushynskyi, I.: Development of the dynamic bayesian network to evaluate the national law enforcement agencies’ work. In: “The crossing point of Intelligent Data Acquisition & Advanced Computing Systems and East & West Scientists” (IDAACS-2019), pp. 418–424, September 18–21, Metz, France (2019) IEEE Catalog number: CFP19803-USB ISBN: 978-1-7281-4068-1

    Google Scholar 

  27. Parsons, S.: Probabilistic Graphical Models: Principles and Techniques by Daphne Koller and Nir Friedman, MIT Press, 1231 pp, ISBN 0-262-01319-3. The Knowledge ngineering Review 26.2, 237–238 (2011)

    Google Scholar 

  28. Buntine, W.: A guide to the literature on learning graphical models. IEEE Trans. Knowl. Data Eng. 8, 195–210 (1996)

    Article  Google Scholar 

  29. Peñaa, J.M., Björkegrenb, J., Tegnér, J.: Learning dynamic Bayesian network models via cross-validation. Pattern Recogn. Lett. 26(14), 2295–2308 (2005)

    Article  Google Scholar 

  30. Gao, S., Xiao, Q., Pan, Q., Li, Q.: Learning Dynamic Bayesian Networks Structure Based on Bayesian Optimization Algorithm. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4492, pp. 424–431. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72393-6_51

    Chapter  Google Scholar 

  31. Hui, W., Guoping, T., Shuangcheng, W.: Dynamic Bayesian network Method to analyze the factors that affect economic growth. J. Northeast Normal Univ. (Nat. Sci. Edition) 45(4), 50–54 (2013)

    MATH  Google Scholar 

  32. D.S. Laboratory: GeNIe & SMILE. (1998). http://genie.sis.pitt.edu/about.html#genie

  33. Xiaohong, N., Yingfei, S.: Bayesian network learning algorithm of non stationary dynamic fusion of multi data source. Mini Micro Syst. 35(2), 374–378 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariia Voronenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Voronenko, M. et al. (2021). Dynamic Bayesian Networks Application for Economy Competitiveness Situational Modelling. In: Shakhovska, N., Medykovskyy, M.O. (eds) Advances in Intelligent Systems and Computing V. CSIT 2020. Advances in Intelligent Systems and Computing, vol 1293. Springer, Cham. https://doi.org/10.1007/978-3-030-63270-0_14

Download citation

Publish with us

Policies and ethics