Skip to main content

Metric Methods in Computer Vision and Pattern Recognition

  • Conference paper
  • First Online:
Advances in Intelligent Systems and Computing V (CSIT 2020)

Abstract

Since its inception, the notion of metric finds numerous applications not only in various domains of mathematics but also in computer science. Some special metrics (like Hausdorff metric on sets, Fréchet metrics on the set of curves, the Kantorovich metric on the set of probability measures as well as their versions and modifications) allow for obtaining quantitative estimations of dissimilarity between objects of different nature, in particular, images or sets of data. Comparison of objects is used in computer vision for evaluation of the accuracy of classifiers, search for objects by template, handwriting recognition. Therefore, we provide a survey of literature on the subject focusing on results concerning Fréchet metrics on the set of trees (in particular, curves) in metric space obtained by the authors. These metrics have their modifications called the Gromov-Fréchet metrics and they are defined on the isometry classes of (nonrooted) trees in metric spaces. In particular, we prove that the obtained space of trees is separable and non-complete. The consideration of the paper concern the quality of segmentation of objects that are presented in the form of polygons. Comparison of objects is based on the Fréchet metric between trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P.K., Fox, K., Nath, A., Sidiropoulos, A., Wang, Y.: Computing the Gromov-Hausdorff distance for metric trees. ACM Trans. Algorithms 14, 24:1–24:20 (2018)

    Google Scholar 

  2. Akitaya, H.A., Buchin, M., Ryvkin, L., Urhausen, J.: The k-Fréchet Distance: How to Walk Your Dog While Teleporting, preprint (2019)

    Google Scholar 

  3. Alber, J., Niedermeier, R.: On multidimensional curves with Hilbert property. Theory Comput. Syst. 33(4), 295–312 (2000)

    Article  MathSciNet  Google Scholar 

  4. Alt, H., Behrends, B., Blomer, J.: Approximate matching of polygonal shapes. Ann. Math. Artif. Intell. 13, 251–265 (1995)

    Article  MathSciNet  Google Scholar 

  5. Alt, H., Buchin, M.: Can we compute the similarity between surfaces? Discrete Comput. Geom. 43(1), 78–99 (2010)

    Article  MathSciNet  Google Scholar 

  6. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5, 75–91 (1995)

    Article  Google Scholar 

  7. Atallah, M.J.: A linear time algorithm for the Hausdorff distance between convex polygons. Inf. Process. Lett. 17, 207–209 (1983)

    Article  MathSciNet  Google Scholar 

  8. Bazylevych, L.E., Zarichnyi, M.M.: On metrization of the hyperspace of oriented curves. Vis. Lviv. Univ. Ser. mekh.-mat. 43, 3–5 (1996)

    Google Scholar 

  9. Berezsky, O.: Fréchet metric for trees. In: Proceedings of the 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, 23–27 August 2016, pp. 213–217 (2016)

    Google Scholar 

  10. Berezsky, O., Melnyk, G., Batko, Y., Pitsun, O.: Regions matching algorithms analysis to quantify the image segmentation results. In: Proceedings of the XIth International Scientific and Technical Conference Computer Sciences and Information Technologies, CSIT 2016, Lviv, 6–10 September 2016, pp. 33–36 (2016)

    Google Scholar 

  11. Berezsky, O., Pitsun, O., Batryn, N., Berezska, K., Savka, N., Dolynyuk, T.: Image segmentation metric-based adaptive method. In: Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, 21–25 August 2018, pp. 54–557 (2018)

    Google Scholar 

  12. Berezsky, O.M., Pitsun, O.Y.: Computation of the minimum distance between non-convex polygons for segmentation quality evaluation. In: Proceedings of the XIIth International Scientific and Technical Conference Computer Sciences and Information Technologies, CSIT 2017, Lviv, 5–8 September 2017, pp. 183–186 (2017)

    Google Scholar 

  13. Berezsky, O.M., Pitsun, O.Y.: Evaluation methods of image segmentation quality. Radio Electron. Comput. Sci. Control 1, 41–61 (2018)

    Google Scholar 

  14. Berezsky, O., Zarichnyi, M.: Fréchet distance between weighted rooted trees. MatematychniStudii 48(2), 165–170 (2017)

    MATH  Google Scholar 

  15. Berezsky, O., Zarichnyi, M.: Gromov-Fréchet distance between curves. MatematychniStudii 50(1), 88–92 (2018)

    MATH  Google Scholar 

  16. Berezsky, O., Zarichnyi, M., Pitsun, O.: Development of a metric and the methods for quantitative estimation of the segmentation of biomedical images. East.-Eur. J. Enterp. Technol. 6(4), 4–11 (2017)

    Google Scholar 

  17. Bishop, C.J., Hakobyan, H.: A central set of dimension 2. Proc. Am. Math. Soc. 136(7), 2453–2461 (2008)

    Article  MathSciNet  Google Scholar 

  18. Buchin, K., Buchin, M., Wenk, C.: Computing the Fréchet distance between simple polygons. Comput. Geom. 41, 2–20 (2008)

    Article  MathSciNet  Google Scholar 

  19. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Vol. 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island, June 2001

    Google Scholar 

  20. Camarena, J.G., Gregori, V., Morillas, S., Sapena, A.: Fast detection and removal of impulsive noise using peer groups and fuzzy metrics. J. Vis. Commun. Image Represent. 19, 20–29 (2008)

    Article  Google Scholar 

  21. Chowdhury, S.: Metric and Topological Approaches to Network Data Analysis. Ph.D thesis, The Ohio State University (2019)

    Google Scholar 

  22. Colijn, C., Plazzotta, G.: A metric on phylogenetic tree shapes. Syst. Biol. 67(1), 113–126 (2018)

    Article  Google Scholar 

  23. Cook IV, A.F., Driemel, A., Sherette, J., Wenk, C.: Computing the Fréchet distance between folded polygons. Comput. Geom. 50, 1–16 (2015)

    Google Scholar 

  24. Deza, M.M., Deza, E.: Encyclopedia of distances, pp. 1–583. Springer (2009)

    Google Scholar 

  25. Dubuisson, M.-P., Jain, A.K.: A modified hausdorff distance for object matching. In: Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, pp. 566–568 (1994)

    Google Scholar 

  26. Edwards, D.A.: The Structure of Superspace, Published in: Studies in Topology. Academic Press (1975)

    Google Scholar 

  27. Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Technical Report CDTR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria (1994)

    Google Scholar 

  28. Hahn, H.: Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Mathematico di Palermo 19, 1–74 (1908)

    MathSciNet  Google Scholar 

  29. Fremlin, D.H.: Skeletons and central sets. Proc. London Math. Soc. 74(3), 701–720 (1997)

    Article  MathSciNet  Google Scholar 

  30. Gromov, M.: Groups of Polynomial growth and Expanding Maps. Publications mathematiques I.H.E.S., 53 (1981)

    Google Scholar 

  31. Huttenlocher, D.P., Klanderman, G.A., William, J.R.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Machine Intell. 15(9), 850–863 (1993)

    Google Scholar 

  32. Jayanthi, N., Indu, S.: Comparison of image matching techniques. Int. J. Latest Trends Eng. Technol. 7(3), 396–401 (2018)

    Google Scholar 

  33. Katukam, R.: Image comparison methods & tools: a review. In: 1st National Conference on, Emerging Trends in Information Technology [ETIT], 28th–29th December 2015, pp. 35–42 (2015)

    Google Scholar 

  34. Kwong, S., He, Q.H., Man, K.F., Tang, K.S., Chau, C.W.: Parallel genetic-based hybrid pattern matching algorithm for isolated word recognition. Int. J. Pattern Recogn. Artif. Intell. 12(5), 573–594 (1998)

    Article  Google Scholar 

  35. Majhi, S., Vitter, J., Wenk, C.: Approximating Gromov-Hausdorff Distance in Euclidean Space. arXiv:1912.13008v1

  36. Mémoli, F.: Gromov-Hausdorff distances in Euclidean spaces. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, pp. 1–8. IEEE, June 2008

    Google Scholar 

  37. Mosig, A., Clausen, M.: Approximately matching polygonal curves with respect to the Fréchet distance. Comput. Geom. 30, 113–127 (2005)

    Article  MathSciNet  Google Scholar 

  38. Parizeau, M., Plamondon, R.: A comparative analysis of regional correlation, dynamic time warping, and skeletal tree matching for signature verification. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 710–717 (1990)

    Article  Google Scholar 

  39. Rote, G.: Computing the Fréchet distance between piecewise smooth curves. Comput. Geom. 37, 162–174 (2007)

    Article  MathSciNet  Google Scholar 

  40. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Deep convolutional matching. In: Computer Vision & Pattern Recognition, pp. 1164–1172 (2015)

    Google Scholar 

  41. Schlesinger, M.I., Vodolazskiy, E.V., Yakovenko, V.M.: Fréchet similarity of closed polygonal curves. Int. J. Comput. Geom. Appl. 26(1), 53–66 (2016)

    Article  Google Scholar 

  42. Schmidt, J., Gröller, E., Bruckner, S.: VAICo: visual analysis for image comparison. IEEE Trans. Vis. Comput. Graph. 19(12), 2090–2099 (2013)

    Google Scholar 

  43. Smith, Z., Wan, Z.: Gromov-Hausdorff distances on p-metric spaces and ultrametric spaces. arXiv:1912.00564v3

  44. Touli, E.F.: Fréchet-Like Distances between Two Merge Trees. arXiv:2004.10747

  45. Tuzhilin, A.A.: Who Invented the Gromov-Hausdorff Distance? arXiv:1612.00728v1

  46. Zarichnyi, I.: Gromov-Hausdorff Ultrametric. arXiv preprint math/0511437 (2005)

    Google Scholar 

  47. Zhou, Y., Chen, M., Webster, M.F.: Comparative evaluation of visualization and experimental results using image comparison metrics. In: Proceedings of IEEE Visualization 2002 Conference, Boston, USA, pp. 315–322 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleh Berezsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berezsky, O., Zarichnyi, M. (2021). Metric Methods in Computer Vision and Pattern Recognition. In: Shakhovska, N., Medykovskyy, M.O. (eds) Advances in Intelligent Systems and Computing V. CSIT 2020. Advances in Intelligent Systems and Computing, vol 1293. Springer, Cham. https://doi.org/10.1007/978-3-030-63270-0_13

Download citation

Publish with us

Policies and ethics