Skip to main content

Accelerating 3-Way Epistasis Detection with CPU+GPU Processing

  • Conference paper
  • First Online:
Job Scheduling Strategies for Parallel Processing (JSSPP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12326))

Included in the following conference series:

Abstract

A Single Nucleotide Polymorphism (SNP) is a DNA variation occurring when a single nucleotide differs between individuals of a species. Some conditions can be explained with a single SNP. However, the combined effect of multiple SNPs, known as epistasis, allows to better correlate genotype with a number of complex traits. We propose a highly optimized GPU+CPU based approach for epistasis detection. The GPU portion of the approach relies only on CUDA cores to score sets of SNPs, based on the copresence of genetic variants and a specific outcome (case or control), making it suitable for a large number of computing devices. Considering datasets with different shapes (more SNPs than patients, or vice versa) and sizes, combining an analytical analysis and an experimental evaluation with five CPU+GPU configurations covering different GPU architectures from the last five years, we show that the performance achieved by our proposal is close to what is theoretically possible on the targeted GPUs. Comparing, in 3-way epistasis detection, with a state-of-the-art GPU-based approach which also does not rely on specialized hardware cores, MPI3SNP, the proposal is on average \(3.83\times \), \(2.72\times \), \(2.44\times \) and \(2.71\times \) faster on systems with a Titan X (Maxwell 2.0), a Titan XP (Pascal), a Titan V (Volta) and a GeForce 2070 SUPER (Turing) GPU, respectively.

This work was supported by the FCT (Fundação para a Ciência e a Tecnologia, Portugal) and the ERDF (European Regional Development Fund, EU) through the projects UIDB/50021/2020 and LISBOA-01–0145-FEDER-031901 (PTDC/CCI-COM/31901/2017, HiPErBio). Sergio Santander-Jiménez is supported by the Post-Doctoral Fellowship from FCT under Grant SFRH/BPD/119220/2016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The experiments targeting the Titan V system that are concerned with comparing the proposal with MPI3SNP were conducted using a more up-to-date driver (440.64).

  2. 2.

    https://github.com/chponte/mpi3snp/wiki/Sample-files.

References

  1. Buckles, B.P., Lybanon, M.: Algorithm 515: Generation of a vector from the lexicographical index [g6]. ACM Trans. Math. Softw. 3(2), 180–182 (1977). https://doi.org/10.1145/355732.355739

    Article  Google Scholar 

  2. Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309–347 (1992). https://doi.org/10.1007/BF00994110

    Article  MATH  Google Scholar 

  3. González-Domínguez, J., Ramos, S., Touriño, J., Schmidt, B.: Parallel pairwise epistasis detection on heterogeneous computing architectures. IEEE Trans. Parallel Dist. Syst. 27, 2329–2340 (2016). https://doi.org/10.1109/TPDS.2015.2460247

    Article  Google Scholar 

  4. González-Domínguez, J., Schmidt, B.: GPU-accelerated exhaustive search for third-order epistatic interactions in case-control studies. J. Comput. Sci. 8, 93–100 (2015). https://doi.org/10.1016/j.jocs.2015.04.001

    Article  Google Scholar 

  5. Goudey, B., et al.: High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in genome wide association studies. Health Inf. Sci. Syst. 3, S3 (2015). https://doi.org/10.1186/2047-2501-3-S1-S3

    Article  Google Scholar 

  6. Joubert, W., et al.: Attacking the opioid epidemic: Determining the epistatic and pleiotropic genetic architectures for chronic pain and opioid addiction. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis. pp. 57:1–57:14. SC 2018, IEEE Press, Piscataway, NJ, USA (2018). https://doi.org/10.1109/SC.2018.00060

  7. Kässens, J.C., González-Domínguez, J., Wienbrandt, L., Schmidt, B.: UPC++ for bioinformatics: A case study using genome-wide association studies. In: 2014 IEEE International Conference on Cluster Computing (CLUSTER). pp. 248–256 (2014). https://doi.org/10.1109/CLUSTER.2014.6968770

  8. Lin, Z., et al.: Genetic association and epistatic interaction of the interleukin-10 signaling pathway in pediatric inflammatory bowel disease. World J. Gastroenterol. 23(27), 4897–4909 (2017). https://doi.org/10.3748/wjg.v23.i27.4897

    Article  Google Scholar 

  9. Luecke, G.R., et al.: Fast epistasis detection in large-scale GWAS for Intel Xeon Phi clusters. In: 2015 IEEE Trustcom/BigDataSE/ISPA. pp. 228–235 (2015). https://doi.org/10.1109/Trustcom.2015.637

  10. Niel, C., et al.: A survey about methods dedicated to epistasis detection. Front. Genetics 6(285), 1–19 (2015). https://doi.org/10.3389/fgene.2015.00285

    Article  Google Scholar 

  11. Nobre, R., Ilic, A., Santander-Jiménez, S., Sousa, L.: Exploring the binary precision capabilities of tensor cores for epistasis detection. In: 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS). pp. 338–347 (2020). https://doi.org/10.1109/IPDPS47924.2020.00043

  12. Ponte-Fernández, C., González-DomíÂnguez, J., MartíÂn, M.J.: Fast search of third-order epistatic interactions on cpu and gpu clusters. Int. J. High Perform. Comput. Appl. 34(1), 20–29 (2020). https://doi.org/10.1177/1094342019852128

    Article  Google Scholar 

  13. Ritchie, M.D.: Finding the epistasis needles in the genome-wide haystack. In: Moore, J.H., Williams, S.M. (eds.) Epistasis. MMB, vol. 1253, pp. 19–33. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-2155-3_2

    Chapter  Google Scholar 

  14. Ritchie, H., et al.: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69(1), 138–147 (2001). https://doi.org/10.1086/321276

    Article  Google Scholar 

  15. Sun, Y., et al.: epiACO - a method for identifying epistasis based on ant colony optimization algorithm. BioData mining 10, 23–23 (2017). https://doi.org/10.1186/s13040-017-0143-7

    Article  Google Scholar 

  16. Wan, X., et al.: BOOST: a fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am. J. Hum. Genet. 87, 325–340 (2010). https://doi.org/10.1016/j.ajhg.2010.07.021

    Article  Google Scholar 

  17. Wang, Q., et al.: GWISFI: A universal GPU interface for exhaustive search of pairwise interactions in case-control GWAS in minutes. In: 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). pp. 403–409 (2014). https://doi.org/10.1109/BIBM.2014.6999192

  18. Wienbrandt, L., Kässens, J.C., Hübenthal, M., Ellinghaus, D.: 1000x faster than PLINK: Combined FPGA and GPU accelerators for logistic regression-based detection of epistasis. J. Comput. Sci. 30, 183–193 (2019). https://doi.org/10.1016/j.jocs.2018.12.013

    Article  Google Scholar 

  19. Yung, L.S., Yang, C., Wan, X., Yu, W.: GBOOST. Bioinf. 27, 1309–1310 (2011). https://doi.org/10.1093/bioinformatics/btr114

    Article  Google Scholar 

  20. Zubenko, G.S., Hughes, H.B.R., Zubenko, W.N.:: D10s1423 identifies a susceptibility locus for alzheimer’s disease (ad7) in a prospective, longitudinal, double-blind study of asymptomatic individuals: results at 14 years. Am. J. Med. Genet. Part B Neuropsychiatric Genet. 153(2), 359–364 (2010). https://doi.org/10.1002/ajmg.b.31017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Nobre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nobre, R., Santander-Jiménez, S., Sousa, L., Ilic, A. (2020). Accelerating 3-Way Epistasis Detection with CPU+GPU Processing. In: Klusáček, D., Cirne, W., Desai, N. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2020. Lecture Notes in Computer Science(), vol 12326. Springer, Cham. https://doi.org/10.1007/978-3-030-63171-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63171-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63170-3

  • Online ISBN: 978-3-030-63171-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics