Skip to main content

Contributions of Wall Stretch and Shear Stress to Vascular Regulation: Molecular Mechanisms of Homeostasis and Expansion

  • Chapter
  • First Online:
Vascular Mechanobiology in Physiology and Disease

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 8))

  • 736 Accesses

Abstract

Blood vessels are continuously exposed to hemodynamic forces due to the pulsatile nature of the blood flow. In normal physiological settings, these forces are essential in the maintenance of vascular cell function and structure, vascular growth, and in the regulation of vascular tone. However, when exceeding the physiological range these biomechanical forces become detrimental and may initiate pathological pathways. In this chapter, we discuss the types of vascular biomechanical forces, unravel cellular and molecular mechanisms underlying the physiological and pathophysiological response of the vascular cells to these biomechanical stimuli, and describe their role in triggering vascular growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Evans PC, Kwak BR (2013) Biomechanical factors in cardiovascular disease. Cardiovasc Res 99(2):229–231

    Article  CAS  PubMed  Google Scholar 

  2. Jufri NF, Mohamedali A, Avolio A, Baker MS (2015) Mechanical stretch: physiological and pathological implications for human vascular endothelial cells. Vasc Cell 7:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 6(1):16–26

    Article  CAS  PubMed  Google Scholar 

  4. Anwar MA, Shalhoub J, Lim CS, Gohel MS, Davies AH (2012) The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J Vasc Res 49(6):463–478

    Article  CAS  PubMed  Google Scholar 

  5. Kwak BR, Back M, Bochaton-Piallat ML, Caligiuri G, Daemen MJ, Davies PF, Hoefer IE, Holvoet P, Jo H, Krams R, Lehoux S, Monaco C, Steffens S, Virmani R, Weber C, Wentzel JJ, Evans PC (2014) Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J 35(43):3013–3020. 3020a-3020d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Papaioannou TG, Stefanadis C (2005) Vascular wall shear stress: basic principles and methods. Hell J Cardiol 46(1):9–15

    Google Scholar 

  7. Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL (1996) Platelets and shear stress. Blood 88(5):1525–1541

    Article  CAS  PubMed  Google Scholar 

  8. Chistiakov DA, Orekhov AN, Bobryshev YV (2017) Effects of shear stress on endothelial cells: go with the flow. Acta Physiol (Oxford) 219(2):382–408

    Article  CAS  Google Scholar 

  9. Huang L, Korhonen RK, Turunen MJ, Finnila MAJ (2019) Experimental mechanical strain measurement of tissues. PeerJ 7:e6545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yang S, Gong X, Qi Y, Jiang Z (2020) Comparative study of variations in mechanical stress and strain of human blood vessels: mechanical reference for vascular cell mechano-biology. Biomech Model Mechanobiol 19(2):519–531

    Article  PubMed  Google Scholar 

  11. Chamley-Campbell J, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59(1):1–61

    Article  CAS  PubMed  Google Scholar 

  12. Hao H, Gabbiani G, Bochaton-Piallat ML (2003) Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol 23(9):1510–1520

    Article  CAS  PubMed  Google Scholar 

  13. Fang Y, Wu D, Birukov KG (2019) Mechanosensing and Mechanoregulation of endothelial cell functions. Compr Physiol 9(2):873–904

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. dela Paz NG, Walshe TE, Leach LL, Saint-Geniez M, D’Amore PA (2012) Role of shear-stress-induced VEGF expression in endothelial cell survival. J Cell Sci 125(Pt 4):831–843

    Google Scholar 

  16. Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431

    Article  CAS  PubMed  Google Scholar 

  17. Givens C, Tzima E (2016) Endothelial Mechanosignaling: does one sensor fit all? Antioxid Redox Signal 25(7):373–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou J, Li YS, Chien S (2014) Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol 34(10):2191–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fujiwara K (2006) Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells. J Intern Med 259(4):373–380

    Article  CAS  PubMed  Google Scholar 

  20. Fujiwara K (2003) Mechanical stresses keep endothelial cells healthy: beneficial effects of a physiological level of cyclic stretch on endothelial barrier function. Am J Phys Lung Cell Mol Phys 285(4):L782–L784

    CAS  Google Scholar 

  21. Steward R Jr, Tambe D, Hardin CC, Krishnan R, Fredberg JJ (2015) Fluid shear, intercellular stress, and endothelial cell alignment. Am J Phys Cell Phys 308(8):C657–C664

    CAS  Google Scholar 

  22. Ikeda M, Kito H, Sumpio BE (1999) Phosphatidylinositol-3 kinase dependent MAP kinase activation via p21ras in endothelial cells exposed to cyclic strain. Biochem Biophys Res Commun 257(3):668–671

    Article  CAS  PubMed  Google Scholar 

  23. Shimizu N, Yamamoto K, Obi S, Kumagaya S, Masumura T, Shimano Y, Naruse K, Yamashita JK, Igarashi T, Ando J (2008) Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating PDGF receptor beta. J Appl Physiol (1985) 104(3):766–772

    Article  CAS  Google Scholar 

  24. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285(5430):1028–1032

    Article  CAS  PubMed  Google Scholar 

  25. Vicente-Manzanares M, Choi CK, Horwitz AR (2009) Integrins in cell migration--the actin connection. J Cell Sci 122(Pt 2):199–206

    Article  CAS  PubMed  Google Scholar 

  26. Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA (2001) Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J 20(17):4639–4647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wojciak-Stothard B, Ridley AJ (2003) Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J Cell Biol 161(2):429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hirayama Y, Sumpio BE (2007) Role of ligand-specific integrins in endothelial cell alignment and elongation induced by cyclic strain. Endothelium 14(6):275–283

    Article  CAS  PubMed  Google Scholar 

  29. Gerhold KA, Schwartz MA (2016) Ion channels in endothelial responses to fluid shear stress. Physiology (Bethesda) 31(5):359–369

    CAS  Google Scholar 

  30. Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE (2014) Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 66(2):513–569

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rafikov R, Fonseca FV, Kumar S, Pardo D, Darragh C, Elms S, Fulton D, Black SM (2011) eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. J Endocrinol 210(3):271–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ito S, Suki B, Kume H, Numaguchi Y, Ishii M, Iwaki M, Kondo M, Naruse K, Hasegawa Y, Sokabe M (2010) Actin cytoskeleton regulates stretch-activated Ca2+ influx in human pulmonary microvascular endothelial cells. Am J Respir Cell Mol Biol 43(1):26–34

    Article  CAS  PubMed  Google Scholar 

  33. Takeda H, Komori K, Nishikimi N, Nimura Y, Sokabe M, Naruse K (2006) Bi-phasic activation of eNOS in response to uni-axial cyclic stretch is mediated by differential mechanisms in BAECs. Life Sci 79(3):233–239

    Article  CAS  PubMed  Google Scholar 

  34. Gudi S, Nolan JP, Frangos JA (1998) Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc Natl Acad Sci U S A 95(5):2515–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Von Offenberg Sweeney N, Cummins PM, Cotter EJ, Fitzpatrick PA, Birney YA, Redmond EM, Cahill PA (2005) Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation. Biochem Biophys Res Commun 329(2):573–582

    Article  CAS  Google Scholar 

  36. Wojtowicz A, Babu SS, Li L, Gretz N, Hecker M, Cattaruzza M (2010) Zyxin mediation of stretch-induced gene expression in human endothelial cells. Circ Res 107(7):898–902

    Article  CAS  PubMed  Google Scholar 

  37. Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27(23):3092–3103

    Article  CAS  PubMed  Google Scholar 

  38. Storch U, Mederos M, Schnitzler Y, Gudermann T (2012) G protein-mediated stretch reception. Am J Physiol Heart Circ Physiol 302(6):H1241–H1249

    Article  CAS  PubMed  Google Scholar 

  39. Brandes RP, Weissmann N, Schroder K (2014) Nox family NADPH oxidases in mechano-transduction: mechanisms and consequences. Antioxid Redox Signal 20(6):887–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goettsch C, Goettsch W, Arsov A, Hofbauer LC, Bornstein SR, Morawietz H (2009) Long-term cyclic strain downregulates endothelial Nox4. Antioxid Redox Signal 11(10):2385–2397

    Article  CAS  PubMed  Google Scholar 

  41. Ali MH, Pearlstein DP, Mathieu CE, Schumacker PT (2004) Mitochondrial requirement for endothelial responses to cyclic strain: implications for mechanotransduction. Am J Phys Lung Cell Mol Phys 287(3):L486–L496

    CAS  Google Scholar 

  42. Ross R (1999) Atherosclerosis--an inflammatory disease. N Engl J Med 340(2):115–126

    Article  CAS  PubMed  Google Scholar 

  43. Spescha RD, Glanzmann M, Simic B, Witassek F, Keller S, Akhmedov A, Tanner FC, Luscher TF, Camici GG (2014) Adaptor protein p66(Shc) mediates hypertension-associated, cyclic stretch-dependent, endothelial damage. Hypertension 64(2):347–353

    Article  CAS  PubMed  Google Scholar 

  44. Dragovich MA, Chester D, Fu BM, Wu C, Xu Y, Goligorsky MS, Zhang XF (2016) Mechanotransduction of the endothelial glycocalyx mediates nitric oxide production through activation of TRP channels. Am J Phys Cell Phys 311(6):C846–C853

    Google Scholar 

  45. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103(3):177–185

    Article  PubMed  Google Scholar 

  46. Levesque MJ, Nerem RM, Sprague EA (1990) Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials 11(9):702–707

    Article  CAS  PubMed  Google Scholar 

  47. Akimoto S, Mitsumata M, Sasaguri T, Yoshida Y (2000) Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1). Circ Res 86(2):185–190

    Article  CAS  PubMed  Google Scholar 

  48. Hermann C, Zeiher AM, Dimmeler S (1997) Shear stress inhibits H2O2-induced apoptosis of human endothelial cells by modulation of the glutathione redox cycle and nitric oxide synthase. Arterioscler Thromb Vasc Biol 17(12):3588–3592

    Article  CAS  PubMed  Google Scholar 

  49. Bell FP, Adamson IL, Schwartz CJ (1974) Aortic endothelial permeability to albumin: focal and regional patterns of uptake and transmural distribution of 131I-albumin in the young pig. Exp Mol Pathol 20(1):57–68

    Article  CAS  PubMed  Google Scholar 

  50. Stemerman MB, Morrel EM, Burke KR, Colton CK, Smith KA, Lees RS (1986) Local variation in arterial wall permeability to low density lipoprotein in normal rabbit aorta. Arteriosclerosis 6(1):64–69

    Article  CAS  PubMed  Google Scholar 

  51. Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, Horrevoets AJ (2002) Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100(5):1689–1698

    Article  CAS  PubMed  Google Scholar 

  52. Novodvorsky P, Chico TJ (2014) The role of the transcription factor KLF2 in vascular development and disease. Prog Mol Biol Transl Sci 124:155–188

    Article  CAS  PubMed  Google Scholar 

  53. Nayak L, Lin Z, Jain MK (2011) "Go with the flow": how Kruppel-like factor 2 regulates the vasoprotective effects of shear stress. Antioxid Redox Signal 15(5):1449–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang RT, Wu D, Meliton A, Oh MJ, Krause M, Lloyd JA, Nigdelioglu R, Hamanaka RB, Jain MK, Birukova A, Kress JP, Birukov KG, Mutlu GM, Fang Y (2017) Experimental lung injury reduces Kruppel-like factor 2 to increase endothelial permeability via regulation of RAPGEF3-Rac1 signaling. Am J Respir Crit Care Med 195(5):639–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McSweeney SR, Warabi E, Siow RC (2016) Nrf2 as an endothelial Mechanosensitive transcription factor: going with the flow. Hypertension 67(1):20–29

    Article  CAS  PubMed  Google Scholar 

  56. Boon RA, Horrevoets AJ (2009) Key transcriptional regulators of the vasoprotective effects of shear stress. Hamostaseologie 29(1):39–40. 41-33

    Article  CAS  PubMed  Google Scholar 

  57. Saito T, Hasegawa Y, Ishigaki Y, Yamada T, Gao J, Imai J, Uno K, Kaneko K, Ogihara T, Shimosawa T, Asano T, Fujita T, Oka Y, Katagiri H (2013) Importance of endothelial NF-kappaB signalling in vascular remodelling and aortic aneurysm formation. Cardiovasc Res 97(1):106–114

    Article  CAS  PubMed  Google Scholar 

  58. Nigro P, Abe J, Berk BC (2011) Flow shear stress and atherosclerosis: a matter of site specificity. Antioxid Redox Signal 15(5):1405–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wung BS, Cheng JJ, Hsieh HJ, Shyy YJ, Wang DL (1997) Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ Res 81(1):1–7

    Article  CAS  PubMed  Google Scholar 

  60. Kobayashi S, Nagino M, Komatsu S, Naruse K, Nimura Y, Nakanishi M, Sokabe M (2003) Stretch-induced IL-6 secretion from endothelial cells requires NF-kappaB activation. Biochem Biophys Res Commun 308(2):306–312

    Article  CAS  PubMed  Google Scholar 

  61. Boon RA, Fledderus JO, Volger OL, van Wanrooij EJ, Pardali E, Weesie F, Kuiper J, Pannekoek H, ten Dijke P, Horrevoets AJ (2007) KLF2 suppresses TGF-beta signaling in endothelium through induction of Smad7 and inhibition of AP-1. Arterioscler Thromb Vasc Biol 27(3):532–539

    Article  CAS  PubMed  Google Scholar 

  62. Wang BW, Chang H, Lin S, Kuan P, Shyu KG (2003) Induction of matrix metalloproteinases-14 and -2 by cyclical mechanical stretch is mediated by tumor necrosis factor-alpha in cultured human umbilical vein endothelial cells. Cardiovasc Res 59(2):460–469

    Article  CAS  PubMed  Google Scholar 

  63. Demicheva E, Hecker M, Korff T (2008) Stretch-induced activation of the transcription factor activator protein-1 controls monocyte chemoattractant protein-1 expression during arteriogenesis. Circ Res 103(5):477–484

    Article  CAS  PubMed  Google Scholar 

  64. Bakiri L, Matsuo K, Wisniewska M, Wagner EF, Yaniv M (2002) Promoter specificity and biological activity of tethered AP-1 dimers. Mol Cell Biol 22(13):4952–4964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Feng S, Bowden N, Fragiadaki M, Souilhol C, Hsiao S, Mahmoud M, Allen S, Pirri D, Ayllon BT, Akhtar S, Thompson AAR, Jo H, Weber C, Ridger V, Schober A, Evans PC (2017) Mechanical activation of hypoxia-inducible factor 1alpha drives endothelial dysfunction at Atheroprone sites. Arterioscler Thromb Vasc Biol 37(11):2087–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Milkiewicz M, Doyle JL, Fudalewski T, Ispanovic E, Aghasi M, Haas TL (2007) HIF-1alpha and HIF-2alpha play a central role in stretch-induced but not shear-stress-induced angiogenesis in rat skeletal muscle. J Physiol 583(Pt 2):753–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chang H, Shyu KG, Wang BW, Kuan P (2003) Regulation of hypoxia-inducible factor-1alpha by cyclical mechanical stretch in rat vascular smooth muscle cells. Clin Sci (Lond) 105(4):447–456

    Article  CAS  Google Scholar 

  68. Lim CS, Qiao X, Reslan OM, Xia Y, Raffetto JD, Paleolog E, Davies AH, Khalil RA (2011) Prolonged mechanical stretch is associated with upregulation of hypoxia-inducible factors and reduced contraction in rat inferior vena cava. J Vasc Surg 53(3):764–773

    Article  PubMed  Google Scholar 

  69. Mata-Greenwood E, Grobe A, Kumar S, Noskina Y, Black SM (2005) Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-beta1 and reactive oxygen species: a requirement for NAD(P)H oxidase. Am J Phys Lung Cell Mol Phys 289(2):L288–L289

    CAS  Google Scholar 

  70. Suresh Babu S, Wojtowicz A, Freichel M, Birnbaumer L, Hecker M, Cattaruzza M (2012) Mechanism of stretch-induced activation of the mechanotransducer zyxin in vascular cells. Sci Signal 5(254):ra91

    Article  PubMed  CAS  Google Scholar 

  71. Gray C, Packham IM, Wurmser F, Eastley NC, Hellewell PG, Ingham PW, Crossman DC, Chico TJ (2007) Ischemia is not required for arteriogenesis in zebrafish embryos. Arterioscler Thromb Vasc Biol 27(10):2135–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Heil M, Schaper W (2004) Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res 95(5):449–458

    Article  CAS  PubMed  Google Scholar 

  73. Lu D, Kassab GS (2011) Role of shear stress and stretch in vascular mechanobiology. J R Soc Interface 8(63):1379–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang Y, Miao H, Li S, Chen KD, Li YS, Yuan S, Shyy JY, Chien S (2002) Interplay between integrins and FLK-1 in shear stress-induced signaling. Am J Phys Cell Phys 283(5):C1540–C1547

    CAS  Google Scholar 

  75. Zimarino M, D'Andreamatteo M, Waksman R, Epstein SE, De Caterina R (2014) The dynamics of the coronary collateral circulation. Nat Rev Cardiol 11(4):191–197

    Article  PubMed  Google Scholar 

  76. Sasamoto A, Nagino M, Kobayashi S, Naruse K, Nimura Y, Sokabe M (2005) Mechanotransduction by integrin is essential for IL-6 secretion from endothelial cells in response to uniaxial continuous stretch. Am J Phys Cell Phys 288(5):C1012–C1022

    CAS  Google Scholar 

  77. Chen Z, Rubin J, Tzima E (2010) Role of PECAM-1 in arteriogenesis and specification of preexisting collaterals. Circ Res 107(11):1355–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu Y, Bock G, Wick G, Xu Q (1998) Activation of PDGF receptor alpha in vascular smooth muscle cells by mechanical stress. FASEB J 12(12):1135–1142

    Article  CAS  PubMed  Google Scholar 

  79. Selzman CH, Miller SA, Zimmerman MA, Gamboni-Robertson F, Harken AH, Banerjee A (2002) Monocyte chemotactic protein-1 directly induces human vascular smooth muscle proliferation. Am J Physiol Heart Circ Physiol 283(4):H1455–H1461

    Article  CAS  PubMed  Google Scholar 

  80. Troidl C, Troidl K, Schierling W, Cai WJ, Nef H, Mollmann H, Kostin S, Schimanski S, Hammer L, Elsasser A, Schmitz-Rixen T, Schaper W (2009) Trpv4 induces collateral vessel growth during regeneration of the arterial circulation. J Cell Mol Med 13(8B):2613–2621

    Article  PubMed  Google Scholar 

  81. Eitenmuller I, Volger O, Kluge A, Troidl K, Barancik M, Cai WJ, Heil M, Pipp F, Fischer S, Horrevoets AJ, Schmitz-Rixen T, Schaper W (2006) The range of adaptation by collateral vessels after femoral artery occlusion. Circ Res 99(6):656–662

    Article  PubMed  CAS  Google Scholar 

  82. Caicedo D, Devesa P, Arce VM, Requena J, Devesa J (2018) Chronic limb-threatening ischemia could benefit from growth hormone therapy for wound healing and limb salvage. Ther Adv Cardiovasc Dis 12(2):53–72

    Article  CAS  PubMed  Google Scholar 

  83. Lu W, Schroit AJ (2005) Vascularization of melanoma by mobilization and remodeling of preexisting latent vessels to patency. Cancer Res 65(3):913–918

    Article  CAS  PubMed  Google Scholar 

  84. Zweifach BW, Lee RE, Hyman C, Chambers R (1944) Omental circulation in Morphinized dogs subjected to graded hemorrhage. Ann Surg 120(2):232–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Granger HJ, Goodman AH, Cook BH (1975) Metabolic models of microcirculatory regulation. Fed Proc 34(11):2025–2030

    CAS  PubMed  Google Scholar 

  86. Mentzer SJ, Konerding MA (2014) Intussusceptive angiogenesis: expansion and remodeling of microvascular networks. Angiogenesis 17(3):499–509

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ziche M, Morbidelli L (2000) Nitric oxide and angiogenesis. J Neuro-Oncol 50(1-2):139–148

    Article  CAS  Google Scholar 

  88. Matsunaga T, Weihrauch DW, Moniz MC, Tessmer J, Warltier DC, Chilian WM (2002) Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide. Circulation 105(18):2185–2191

    Article  CAS  PubMed  Google Scholar 

  89. Niu J, Azfer A, Zhelyabovska O, Fatma S, Kolattukudy PE (2008) Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem 283(21):14542–14551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang Y, Chang J, Li YC, Li YS, Shyy JY, Chien S (2004) Shear stress and VEGF activate IKK via the Flk-1/Cbl/Akt signaling pathway. Am J Physiol Heart Circ Physiol 286(2):H685–H692

    Article  CAS  PubMed  Google Scholar 

  91. Stoltz RA, Abraham NG, Laniado-Schwartzman M (1996) The role of NF-kappaB in the angiogenic response of coronary microvessel endothelial cells. Proc Natl Acad Sci U S A 93(7):2832–2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zheng W, Christensen LP, Tomanek RJ (2004) Stretch induces upregulation of key tyrosine kinase receptors in microvascular endothelial cells. Am J Physiol Heart Circ Physiol 287(6):H2739–H2745

    Article  CAS  PubMed  Google Scholar 

  93. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270(5241):1500–1502

    Article  CAS  PubMed  Google Scholar 

  94. Chen KD, Li YS, Kim M, Li S, Yuan S, Chien S, Shyy JY (1999) Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 274(26):18393–18400

    Article  CAS  PubMed  Google Scholar 

  95. Perdih A, Dolenc MS (2010) Small molecule antagonists of integrin receptors. Curr Med Chem 17(22):2371–2392

    Article  CAS  PubMed  Google Scholar 

  96. Chachisvilis M, Zhang YL, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A 103(42):15463–15468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Campinho P, Vilfan A, Vermot J (2020) Blood flow forces in shaping the vascular system: a focus on endothelial cell behavior. Front Physiol 11:552

    Article  PubMed  PubMed Central  Google Scholar 

  98. Packham IM, Gray C, Heath PR, Hellewell PG, Ingham PW, Crossman DC, Milo M, Chico TJ (2009) Microarray profiling reveals CXCR4a is downregulated by blood flow in vivo and mediates collateral formation in zebrafish embryos. Physiol Genomics 38(3):319–327

    Article  CAS  PubMed  Google Scholar 

  99. Jung B, Obinata H, Galvani S, Mendelson K, Ding BS, Skoura A, Kinzel B, Brinkmann V, Rafii S, Evans T, Hla T (2012) Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell 23(3):600–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Saunders WB, Bohnsack BL, Faske JB, Anthis NJ, Bayless KJ, Hirschi KK, Davis GE (2006) Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol 175(1):179–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schrimpf C, Koppen T, Duffield JS, Boer U, David S, Ziegler W, Haverich A, Teebken OE, Wilhelmi M (2017) TIMP3 is regulated by Pericytes upon shear stress detection leading to a modified endothelial cell response. Eur J Vasc Endovasc Surg 54(4):524–533

    Article  CAS  PubMed  Google Scholar 

  102. Demolli S, Doddaballapur A, Devraj K, Stark K, Manavski Y, Eckart A, Zehendner CM, Lucas T, Korff T, Hecker M, Massberg S, Liebner S, Kaluza D, Boon RA, Dimmeler S (2017) Shear stress-regulated miR-27b controls pericyte recruitment by repressing SEMA6A and SEMA6D. Cardiovasc Res 113(6):681–691

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

Authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Cheng .

Editor information

Editors and Affiliations

Ethics declarations

Sources of Funding: This work was supported by the Netherlands Foundation for Cardiovascular Excellence [to CC], Netherlands Organization for Scientific Research Vidi grant [no. 91714302 to CC], the Erasmus MC fellowship grant [to CC], the Regenerative Medicine Fellowship grant of the University Medical Center Utrecht [to CC] and the Netherlands Cardiovascular Research Initiative: An initiative with the support of the Dutch Heart Foundation [CVON2014-11 RECONNECT to CC and DD].

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maringanti, R., Meijer, E., Brandt, M.M., Duncker, D.J., Cheng, C. (2021). Contributions of Wall Stretch and Shear Stress to Vascular Regulation: Molecular Mechanisms of Homeostasis and Expansion. In: Hecker, M., Duncker, D.J. (eds) Vascular Mechanobiology in Physiology and Disease. Cardiac and Vascular Biology, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-63164-2_2

Download citation

Publish with us

Policies and ethics