Mechanobiology of Atherosclerosis

Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol., volume 8)


Vascular mechanobiology deals with the question of how different physical forces and changes in the mechanical properties of single cells and entire tissue structures contribute to cell differentiation, physiology, initiation, and progression of disease development. This review surveys new findings and progress in the research field of atherosclerosis in recent years. Moreover, it aims to integrate different aspects to demonstrate the interlacing and integration of certain mechanisms in the pathogenesis of atherosclerosis.


Mechanical forces Glycocalyx Transcription factors Epigenetics Arterial stiffness 



Apolipoprotein E


Intercellular adhesion molecule-1


Named after their initial discovery in the proteins Lin11, Isl-1, Mec-3


Nicotinamide adenine dinucleotide phosphate hydrate


Endothelial nitric oxide synthase (eNOS)


NADPH oxidase


Reactive oxygen species


Acronym refers to the Caenorhabditis elegans Sma (small worm phenotype) and the Drosophila Mad (mothers against decapentaplegic) gene family


Small Ubiquitin-related Modifier


Transcriptional co-activator with PDZ-binding motif


Tumor necrosis factor-α


Vascular cell adhesion protein-1


Vascular smooth muscle cells


Yes-associated protein


Compliance with Ethical Standards

Conflict of Interest The author declares that he has no conflict of interest.

Ethical Approval This chapter does not contain any studies with human participants or animals.

Sources of Funding None.


  1. 1.
    Warboys CM, Ghim M, Weinberg PD (2019) Understanding mechanobiology in cultured endothelium: a review of the orbital shaker method. Atherosclerosis 285:170–177PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Peiffer V, Sherwin SJ, Weinberg PD (2013) Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc Res 99:242–250PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Warboys CM, Amini N, de Luca A, Evans PC (2011) The role of blood flow in determining the sites of atherosclerotic plaques. F1000 Med Rep 3:5PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kwak BR, Back M, Bochaton-Piallat ML, Caligiuri G, Daemen MJ, Davies PF, Hoefer IE, Holvoet P, Jo H, Krams R, Lehoux S, Monaco C, Steffens S, Virmani R, Weber C, Wentzel JJ, Evans PC (2014) Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J 35:3013–3020, 3020a–3020dGoogle Scholar
  5. 5.
    Zeng Y, Zhang XF, Fu BM, Tarbell JM (2018) The role of endothelial surface glycocalyx in mechanosensing and transduction. Adv Exp Med Biol 1097:1–27PubMedCrossRefGoogle Scholar
  6. 6.
    Muhamed I, Chowdhury F, Maruthamuthu V (2017) Biophysical tools to study cellular mechanotransduction. Bioengineering (Basel) 4Google Scholar
  7. 7.
    Palombo C, Kozakova M (2016) Arterial stiffness, atherosclerosis and cardiovascular risk: pathophysiologic mechanisms and emerging clinical indications. Vascul Pharmacol 77:1–7PubMedCrossRefGoogle Scholar
  8. 8.
    Won BY, Park SG, Lee SH, Kim MJ, Chun H, Hong D, Kim YS (2020) Characteristics of metabolic factors related to arterial stiffness in young and old adults. Clin Exp Hypertens 42:225–232PubMedCrossRefGoogle Scholar
  9. 9.
    Wolf D, Ley K (2019) Immunity and inflammation in atherosclerosis. Circ Res 124:315–327PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    McDonald KK, Cooper S, Danielzak L, Leask RL (2016) Glycocalyx degradation induces a proinflammatory phenotype and increased leukocyte adhesion in cultured endothelial cells under flow. PLoS One 11:e0167576PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M (2010) Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res 87:300–310PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Cancel LM, Ebong EE, Mensah S, Hirschberg C, Tarbell JM (2016) Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model. Atherosclerosis 252:136–146PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bar A, Targosz-Korecka M, Suraj J, Proniewski B, Jasztal A, Marczyk B, Sternak M, Przybylo M, Kurpinska A, Walczak M, Kostogrys RB, Szymonski M, Chlopicki S (2019) Degradation of glycocalyx and multiple manifestations of endothelial dysfunction coincide in the early phase of endothelial dysfunction before atherosclerotic plaque development in apolipoprotein E/low-density lipoprotein receptor-deficient mice. J Am Heart Assoc 8:e011171PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Constantinescu AA, Vink H, Spaan JA (2003) Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 23:1541–1547PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Fels B, Kusche-Vihrog K (2020) It takes more than two to tango: mechanosignaling of the endothelial surface. Pflugers Arch 472:419–433PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Grandoch M, Kohlmorgen C, Melchior-Becker A, Feldmann K, Homann S, Muller J, Kiene LS, Zeng-Brouwers J, Schmitz F, Nagy N, Polzin A, Gowert NS, Elvers M, Skroblin P, Yin X, Mayr M, Schaefer L, Tannock LR, Fischer JW (2016) Loss of biglycan enhances thrombin generation in apolipoprotein E-deficient mice: implications for inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol 36:e41–e50PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Liu J, Kang H, Ma X, Sun A, Luan H, Deng X, Fan Y (2018) Vascular cell glycocalyx-mediated vascular remodeling induced by hemodynamic environmental alteration. Hypertension 71:1201–1209PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kolarova H, Ambruzova B, Svihalkova Sindlerova L, Klinke A, Kubala L (2014) Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm 2014:694312PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Grumbach IM, Chen W, Mertens SA, Harrison DG (2005) A negative feedback mechanism involving nitric oxide and nuclear factor kappa-B modulates endothelial nitric oxide synthase transcription. J Mol Cell Cardiol 39:595–603PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bartosch AMW, Mathews R, Tarbell JM (2017) Endothelial glycocalyx-mediated nitric oxide production in response to selective AFM pulling. Biophys J 113:101–108PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Rubio-Gayosso I, Platts SH, Duling BR (2006) Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 290:H2247–H2256PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    McNally JS, Davis ME, Giddens DP, Saha A, Hwang J, Dikalov S, Jo H, Harrison DG (2003) Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol 285:H2290–H2297PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Siu KL, Gao L, Cai H (2016) Differential roles of protein complexes NOX1-NOXO1 and NOX2-p47phox in mediating endothelial redox responses to oscillatory and unidirectional laminar shear stress. J Biol Chem 291:8653–8662PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bai K, Wang W (2012) Spatio-temporal development of the endothelial glycocalyx layer and its mechanical property in vitro. J R Soc Interface 9:2290–2298PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91:7A–11APubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Wagner AH, Kautz O, Fricke K, Zerr-Fouineau M, Demicheva E, Guldenzoph B, Bermejo JL, Korff T, Hecker M (2009) Upregulation of glutathione peroxidase offsets stretch-induced proatherogenic gene expression in human endothelial cells. Arterioscler Thromb Vasc Biol 29:1894–1901PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Zeng Y, Tarbell JM (2014) The adaptive remodeling of endothelial glycocalyx in response to fluid shear stress. PLoS One 9:e86249PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wagner AH, Hildebrandt A, Baumgarten S, Jungmann A, Muller OJ, Sharov VS, Schoneich C, Hecker M (2011) Tyrosine nitration limits stretch-induced CD40 expression and disconnects CD40 signaling in human endothelial cells. Blood 118:3734–3742PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Gouverneur M, Spaan JA, Pannekoek H, Fontijn RD, Vink H (2006) Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 290:H458–H452PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Moller K, Adolph O, Grunow J, Elrod J, Popa M, Ghosh S, Schwarz M, Schwale C, Grassle S, Huck V, Bruehl C, Wieland T, Schneider SW, Nobiling R, Wagner AH, Hecker M (2015) Mechanism and functional impact of CD40 ligand-induced von Willebrand factor release from endothelial cells. Thromb Haemost 113:1095–1108PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Motterlini R, Green CJ, Foresti R (2002) Regulation of heme oxygenase-1 by redox signals involving nitric oxide. Antioxid Redox Signal 4:615–624PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Psefteli P-M, Fowler M, Mann GE, Siow RC (2018) Redox regulation in human endothelial cells: a critical role for the glycocalyx in mechanotransduction of fluid shear stress. Free Radical Biol Med 120:S26CrossRefGoogle Scholar
  33. 33.
    Mitra R, O’Neil GL, Harding IC, Cheng MJ, Mensah SA, Ebong EE (2017) Glycocalyx in atherosclerosis-relevant endothelium function and as a therapeutic target. Curr Atheroscler Rep 19:63PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cao RN, Tang L, Xia ZY, Xia R (2019) Endothelial glycocalyx as a potential theriapeutic target in organ injuries. Chin Med J (Engl) 132:963–975CrossRefGoogle Scholar
  35. 35.
    Schonbeck U, Libby P (2001) The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 58:4–43PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Chen Y, Chen J, Xiong Y, Da Q, Xu Y, Jiang X, Tang H (2006) Internalization of CD40 regulates its signal transduction in vascular endothelial cells. Biochem Biophys Res Commun 345:106–117PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Albeiroti S, Ayasoufi K, Hill DR, Shen B, de la Motte CA (2015) Platelet hyaluronidase-2: an enzyme that translocates to the surface upon activation to function in extracellular matrix degradation. Blood 125:1460–1469PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Niu N, Xu S, Xu Y, Little PJ, Jin ZG (2019) Targeting mechanosensitive transcription factors in atherosclerosis. Trends Pharmacol Sci 40:253–266PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Nagel T, Resnick N, Dewey CF Jr, Gimbrone MA Jr (1999) Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler Thromb Vasc Biol 19:1825–1834PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Min E, Schwartz MA (2019) Translocating transcription factors in fluid shear stress-mediated vascular remodeling and disease. Exp Cell Res 376:92–97PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hecker M, Wagner AH (2017) Transcription factor decoy technology: a therapeutic update. Biochem Pharmacol 144:29–34PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kultz D, Csonka L (1999) What sets the TonE during osmotic stress? Proc Natl Acad Sci U S A 96:1814–1816PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Halterman JA, Kwon HM, Wamhoff BR (2012) Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5). Am J Physiol Cell Physiol 302:C1–C8PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Scherer C, Pfisterer L, Wagner AH, Hodebeck M, Cattaruzza M, Hecker M, Korff T (2014) Arterial wall stress controls NFAT5 activity in vascular smooth muscle cells. J Am Heart Assoc 3:e000626PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hodebeck M, Scherer C, Wagner AH, Hecker M, Korff T (2014) TonEBP/NFAT5 regulates ACTBL2 expression in biomechanically activated vascular smooth muscle cells. Front Physiol 5:467PubMedPubMedCentralGoogle Scholar
  46. 46.
    Zappe M, Feldner A, Arnold C, Sticht C, Hecker M, Korff T (2018) NFAT5 isoform C controls biomechanical stress responses of vascular smooth muscle cells. Front Physiol 9:1190PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Arnold C, Feldner A, Zappe M, Komljenovic D, De La Torre C, Ruzicka P, Hecker M, Neuhofer W, Korff T (2019) Genetic ablation of NFAT5/TonEBP in smooth muscle cells impairs flow- and pressure-induced arterial remodeling in mice. FASEB J 33:3364–3377PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Wang YX, Wang DY, Guo YC, Guo J (2019) Zyxin: a mechanotransductor to regulate gene expression. Eur Rev Med Pharmacol Sci 23:413–425PubMedPubMedCentralGoogle Scholar
  49. 49.
    Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2:a005066PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ghosh S, Kollar B, Nahar T, Suresh Babu S, Wojtowicz A, Sticht C, Gretz N, Wagner AH, Korff T, Hecker M (2015) Loss of the mechanotransducer zyxin promotes a synthetic phenotype of vascular smooth muscle cells. J Am Heart Assoc 4:e001712PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118:692–702PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Suresh Babu S, Wojtowicz A, Freichel M, Birnbaumer L, Hecker M, Cattaruzza M (2012) Mechanism of stretch-induced activation of the mechanotransducer zyxin in vascular cells. Sci Signal 5:ra91Google Scholar
  53. 53.
    Wojtowicz A, Babu SS, Li L, Gretz N, Hecker M, Cattaruzza M (2010) Zyxin mediation of stretch-induced gene expression in human endothelial cells. Circ Res 107:898–902PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zaragoza C, Marquez S, Saura M (2012) Endothelial mechanosensors of shear stress as regulators of atherogenesis. Curr Opin Lipidol 23:446–452PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Lorentzen KA, Chai S, Chen H, Danielsen CC, Simonsen U, Wogensen L (2016) Mechanisms involved in extracellular matrix remodeling and arterial stiffness induced by hyaluronan accumulation. Atherosclerosis 244:195–203PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Ohayon J, Gharib AM, Garcia A, Heroux J, Yazdani SK, Malve M, Tracqui P, Martinez MA, Doblare M, Finet G, Pettigrew RI (2011) Is arterial wall-strain stiffening an additional process responsible for atherosclerosis in coronary bifurcations?: an in vivo study based on dynamic CT and MRI. Am J Physiol Heart Circ Physiol 301:H1097–H1106PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Yang TL, Lee PL, Lee DY, Wang WL, Wei SY, Lee CI, Chiu JJ (2018) Differential regulations of fibronectin and laminin in Smad2 activation in vascular endothelial cells in response to disturbed flow. J Biomed Sci 25:1PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Xu S, Xu Y, Liu P, Zhang S, Liu H, Slavin S, Kumar S, Koroleva M, Luo J, Wu X, Rahman A, Pelisek J, Jo H, Si S, Miller CL, Jin ZG (2019) The novel coronary artery disease risk gene JCAD/KIAA1462 promotes endothelial dysfunction and atherosclerosis. Eur Heart J 40:2398–2408PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wang YY, Yu W, Zhou B (2017) Hippo signaling pathway in cardiovascular development and diseases. Yi Chuan 39:576–587PubMedPubMedCentralGoogle Scholar
  60. 60.
    Liu D, Lv H, Liu Q, Sun Y, Hou S, Zhang L, Yang M, Han B, Wang G, Wang X, Du W, Nie H, Zhang R, Huang X, Hou J, Yu B (2019) Atheroprotective effects of methotrexate via the inhibition of YAP/TAZ under disturbed flow. J Transl Med 17:378PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Balanescu AR, Bojinca VC, Bojinca M, Donisan T, Balanescu SM (2019) Cardiovascular effects of methotrexate in immune-mediated inflammatory diseases. Exp Ther Med 17:1024–1029PubMedPubMedCentralGoogle Scholar
  62. 62.
    Davies PF, Manduchi E, Jimenez JM, Jiang YZ (2017) Biofluids, cell mechanics and epigenetics: flow-induced epigenetic mechanisms of endothelial gene expression. J Biomech 50:3–10PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Dunn J, Thabet S, Jo H (2015) Flow-dependent epigenetic DNA methylation in endothelial gene expression and atherosclerosis. Arterioscler Thromb Vasc Biol 35:1562–1569PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Heo KS, Berk BC, Abe J (2016) Disturbed flow-induced endothelial proatherogenic signaling via regulating post-translational modifications and epigenetic events. Antioxid Redox Signal 25:435–450PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Takabe W, Alberts-Grill N, Jo H (2011) Disturbed flow: p53 SUMOylation in the turnover of endothelial cells. J Cell Biol 193:805–807PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Liu X, Ma Y, Yin K, Li W, Chen W, Zhang Y, Zhu C, Li T, Han B, Wang S, Zhou Z (2019) Long non-coding and coding RNA profiling using strand-specific RNA-seq in human hypertrophic cardiomyopathy. Sci Data 6:90PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Neth P, Nazari-Jahantigh M, Schober A, Weber C (2013) MicroRNAs in flow-dependent vascular remodelling. Cardiovasc Res 99:294–303PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Kumarswamy R, Volkmann I, Thum T (2011) Regulation and function of miRNA-21 in health and disease. RNA Biol 8:706–713PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober A (2013) MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis? Arterioscler Thromb Vasc Biol 33:449–454PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Wang KC, Nguyen P, Weiss A, Yeh YT, Chien HS, Lee A, Teng D, Subramaniam S, Li YS, Chien S (2014) MicroRNA-23b regulates cyclin-dependent kinase-activating kinase complex through cyclin H repression to modulate endothelial transcription and growth under flow. Arterioscler Thromb Vasc Biol 34:1437–1445PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Uchida S, Dimmeler S (2015) Long noncoding RNAs in cardiovascular diseases. Circ Res 116:737–750PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Jae N, Heumuller AW, Fouani Y, Dimmeler S (2019) Long non-coding RNAs in vascular biology and disease. Vascul Pharmacol 114:13–22PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Leisegang MS, Bibli SI, Gunther S, Pfluger-Muller B, Oo JA, Hoper C, Seredinski S, Yekelchyk M, Schmitz-Rixen T, Schurmann C, Hu J, Looso M, Sigala F, Boon RA, Fleming I, Brandes RP (2019) Pleiotropic effects of laminar flow and statins depend on the Kruppel-like factor-induced lncRNA MANTIS. Eur Heart JGoogle Scholar
  74. 74.
    Kumar S, Williams D, Sur S, Wang JY, Jo H (2019) Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascul Pharmacol 114:76–92PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Yun Y, Ma C, Ma X (2014) The SNP rs1883832 in CD40 gene and risk of atherosclerosis in Chinese population: a meta-analysis. PLoS One 9:e97289PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rodrigues DA, Martins JV, KSE S, Costa IR, Lagares MH, Campedelli FL, Barbosa AM, de Morais MP, Moura KK (2017) GSTM1 polymorphism in patients with clinical manifestations of atherosclerosis. Genet Mol Res 16Google Scholar
  77. 77.
    Yeh HL, Kuo LT, Sung FC, Yeh CC (2018) Association between polymorphisms of antioxidant gene (MnSOD, CAT, and GPx1) and risk of coronary artery disease. Biomed Res Int 2018:5086869PubMedPubMedCentralGoogle Scholar
  78. 78.
    Cattaruzza M, Guzik TJ, Slodowski W, Pelvan A, Becker J, Halle M, Buchwald AB, Channon KM, Hecker M (2004) Shear stress insensitivity of endothelial nitric oxide synthase expression as a genetic risk factor for coronary heart disease. Circ Res 95:841–847PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Shuvalova YA, Kaminnyi AI, Meshkov AN, Shirokov RO, Samko AN (2012) Association between polymorphisms of eNOS and GPx-1 genes, activity of free-radical processes and in-stent restenosis. Mol Cell Biochem 370:241–249PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Asif AR, Hecker M, Cattaruzza M (2009) Disinhibition of SOD-2 expression to compensate for a genetically determined NO deficit in endothelial cells–brief report. Arterioscler Thromb Vasc Biol 29:1890–1893PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Urban I, Turinsky M, Gehrmann S, Morgenstern J, Brune M, Milewski MR, Wagner AH, Rumig C, Fleming TH, Leuschner F, Gleissner CA, Hecker M (2019) 15-Deoxy-delta12,14-prostaglandin J2 reinforces the anti-inflammatory capacity of endothelial cells with a genetically determined nitric oxide deficit. Circ ResGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Department of Cardiovascular PhysiologyInstitute of Physiology and Pathophysiology, Heidelberg UniversityHeidelbergGermany

Personalised recommendations