Skip to main content

Part of the book series: AIRO Springer Series ((AIROSS,volume 5))

Abstract

An acyclic coloring of a digraph as defined by V. Neumann-Lara is a vertex-coloring such that no monochromatic directed cycles occur. Counting the number of such colorings with k colors can be done by counting so-called Neumann-Lara-coflows (NL-coflows), which build a polynomial in k. We will present a representation of this polynomial using totally cyclic subdigraphs, which form a graded poset Q. Furthermore we will decompose our NL-coflow polynomial, which becomes the chromatic polynomial of a digraph by multiplication with the number of colors to the number of components, using the geometric structure of the face lattices of a class of polyhedra that corresponds to Q. This decomposition leads to a representation using certain subsets of edges of the underlying undirected graph and will confirm the equality of our chromatic polynomial of a digraph and the chromatic polynomial of the underlying undirected graph in the case of symmetric digraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aigner, M.: Combinatorial Theory. Springer, Berlin (1980)

    MATH  Google Scholar 

  2. Altenbokum, B., Hochstättler, W., Wiehe, J.: The NL-flow polynomial. Discrete Appl. Math. (2021 in press). https://doi.org/10.1016/j.dam.2020.02.011

  3. Beck, M., Sanyal, R.: Combinatorial Reciprocity Theorems. American Math. Society, Providence (2018)

    Google Scholar 

  4. Bokal, D., Fijavz, G., Juvan, M., Kayll, P.M., Mohar, B.: The circular chromatic number of a digraph. J. Graph Theory 46(3), 227–240 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, London (2008)

    Book  Google Scholar 

  6. Ellis, P., Soukup, D.T.: Cycle reversions and dichromatic number in tournaments. Eur. J. Comb. 77, 31–48 (2019)

    Article  MathSciNet  Google Scholar 

  7. Erdős, P.: Problems and results in number theory and graph theory. In: Proc. Ninth Manitoba Conf. on Numerical Math. and Computing, pp. 3–21 (1979)

    Google Scholar 

  8. Erdős, P., Gimbel, J., Kratsch, D.: Some extremal results in cochromatic and dichromatic theory. J. Graph Theory 15(6), 579–585 (1991)

    Google Scholar 

  9. Hochstättler, W.: A flow theory for the dichromatic number. Eur. J. Comb. 66, 160–167 (2017)

    Article  MathSciNet  Google Scholar 

  10. Li, Z., Mohar, B.: Planar digraphs of digirth four are 2-colorable. SIAM J. Discret. Math. 31, 2201–2205 (2017)

    Article  MathSciNet  Google Scholar 

  11. Mohar, B., Wu, H.: Dichromatic number and fractional chromatic number. Forum Math. Sigma 4, e32 (2016)

    Article  MathSciNet  Google Scholar 

  12. Neumann-Lara, V.: The dichromatic number of a digraph. J. Comb. Theory Ser. B 33, 265–270 (1982)

    Article  MathSciNet  Google Scholar 

  13. Neumann-Lara, V.: Vertex colourings in digraphs. Some problems. Tech. rep., University of Waterloo (1985)

    Google Scholar 

  14. Neumann-Lara, V.: The 3 and 4-dichromatic tournaments of minimum order. Discrete Math. 135(1), 233–243 (1994)

    Article  MathSciNet  Google Scholar 

  15. Rota, G.C.: On the foundations of combinatorial theory. Z. Wahrscheinlichkeitstheorie Verw. Geb. 2, 340–368 (1964)

    Article  Google Scholar 

  16. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  17. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Canad. J. Math. 6, 80–91 (1954)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Wiehe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hochstättler, W., Wiehe, J. (2021). The Chromatic Polynomial of a Digraph. In: Gentile, C., Stecca, G., Ventura, P. (eds) Graphs and Combinatorial Optimization: from Theory to Applications. AIRO Springer Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-63072-0_1

Download citation

Publish with us

Policies and ethics