Skip to main content

Mass Spectra Interpretation and the Interest of SpecFit for Identifying Uncommon Modifications

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2019)

Abstract

SpecOMS [8] is a software designed to identify peptides from spectra obtained by mass spectrometry experiments. In this paper, we make a specific focus on SpecFit, an optional module of the SpecOMS software. Because SpecOMS is particularly fast, SpecFit can be used within SpecOMS to further investigate spectra whose mass does not necessarily coincide with the mass of its corresponding peptide, and consequently to suggest modifications for these peptides, together with their locations. In this paper, we show that SpecFit is able to identify uncommon peptide modifications that are generally not detected by other software. In that sense, SpecFit is of particular interest since, even today, a large majority of spectra remain uninterpreted.

Supported by the Conseil Régional Pays de la Loire GRIOTE program (2013–2018) and the French National Research Agency (ANR-18-CE45-004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Leucine and Isoleucine having the same mass, it is impossible to discriminate one from the other based only on \(\varDelta m\).

References

  1. Aken, B.L., et al.: Ensembl 2017. Nucl. Acids Res. 45(D1), D635–D642 (2016)

    Article  Google Scholar 

  2. Bittremieux, W., Meysman, P., Noble, W., Laukens, K.: Fast open modification spectral library searching through approximate nearest neighbor indexing. J. Proteome Res. 17(10), 3463–3474 (2018)

    Article  Google Scholar 

  3. Cheng, C., Krishnakumar, V., Chan, A.P., Thibaud-Nissen, F., Schobel, S., Town, C.: Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89(4), 789–804 (2017)

    Article  Google Scholar 

  4. Chi, H., et al.: Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat. Biotechnol. 36, 1059–1061 (2018)

    Article  Google Scholar 

  5. Chick, J., et al.: A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides. Nat. Biotechnol. 33(7), 743–749 (2015)

    Article  Google Scholar 

  6. Choi, H., Nesvizhskii, A.I.: False discovery rates and related statistical concepts in mass spectrometry-based proteomics. J. Proteome Res. 7(1), 47–50 (2008)

    Article  Google Scholar 

  7. Creasy, D.M., Cottrell, J.S.: Unimod: Protein modifications for mass spectrometry. Proteomics 4(6), 1534–1536 (2004)

    Article  Google Scholar 

  8. David, M., Fertin, G., Rogniaux, H., Tessier, D.: SpecOMS: a full open modification search method performing all-to-all spectra comparisons within minutes. J. Proteome Res. 16(8), 3030–3038 (2017)

    Article  Google Scholar 

  9. David, M., Fertin, G., Tessier, D.: SpecTrees: an efficient without a priori data structure for MS/MS spectra identification. In: Frith, M., Storm Pedersen, C.N. (eds.) WABI 2016. LNCS, vol. 9838, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43681-4_6

    Chapter  Google Scholar 

  10. Elias, J., Gygi, S.: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007)

    Article  Google Scholar 

  11. He, L., Diedrich, J., Chu, Y.Y., Yates, J.R.: Extracting accurate precursor information for tandem mass spectra by RawConverter. Anal. Chem. 87(22), 11361–11367 (2015)

    Article  Google Scholar 

  12. Kim, M., Zhong, J., Pandey, A.: Common errors in mass spectrometry-based analysis of post-translational modifications. Proteomics 16(5), 700–714 (2016)

    Article  Google Scholar 

  13. Kong, A., Leprevost, F., Avtonomov, D., Mellacheruvu, D., Nesvizhskii, A.: MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14(5), 513–520 (2017)

    Article  Google Scholar 

  14. Na, S., Kim, J., Paek, E.: MODplus: robust and unrestrictive identification of post-translational modifications using mass spectrometry. Anal. Chem. 91(17), 11324–11333 (2019)

    Article  Google Scholar 

  15. Prabakaran, S., Lippens, G., Steen, H., Gunawardena, J.: Post-translational modification: nature’s escape from genetic imprisonment and the basis for dynamic information encoding. WIREs Syst. Biol. Med. 4(6), 565–583 (2012)

    Article  Google Scholar 

  16. Solntsev, S.K., Shortreed, M.R., Frey, B.L., Smith, L.M.: Enhanced global post-translational modification discovery with MetaMorpheus. J. Proteome Res. 17(5), 1844–1851 (2018)

    Article  Google Scholar 

  17. Vizcaíno, J.A., et al.: 2016 update of the PRIDE database and its related tools. Nucl. Acids Res. 44(D1), D447–D456 (2015)

    Google Scholar 

  18. Zolg, D., et al.: Building ProteomeTools based on a complete synthetic human proteome. Nat. Methods 14(3), 259–262 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Fertin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fertin, G., David, M., Rogniaux, H., Tessier, D. (2020). Mass Spectra Interpretation and the Interest of SpecFit for Identifying Uncommon Modifications. In: Cazzaniga, P., Besozzi, D., Merelli, I., Manzoni, L. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2019. Lecture Notes in Computer Science(), vol 12313. Springer, Cham. https://doi.org/10.1007/978-3-030-63061-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63061-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63060-7

  • Online ISBN: 978-3-030-63061-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics