Skip to main content

Learning Cancer Drug Sensitivities in Large-Scale Screens from Multi-omics Data with Local Low-Rank Structure

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2019)

Abstract

The molecular characterization of tumor samples by multiple omics data sets of different types or modalities (e.g. gene expression, mutation, CpG methylation) has become an invaluable source of information for assessing the expected performance of individual drugs and their combinations. Merging relevant information from the omics data modalities provides the statistical basis for determining suitable therapies for specific cancer patients. Different data modalities may each have their own specific structures that need to be taken into account during inference. In this paper, we assume that each omics data modality has a low-rank structure with only a few relevant features that affect the prediction and we propose to use a composite local nuclear norm penalization for learning drug sensitivity. Numerical results show that the composite low-rank structure can improve the prediction performance compared to using a global low-rank approach or elastic net regression.

The first two authors contributed equally. L.R. is supported by The Norwegian Research Council 237718 through the Big Insight Center for research-driven innovation. The research of T.T.M. and J.C. are supported by the European Research Council (SCARABEE, no. 742158).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cran.r-project.org/package=rrpack.

  2. 2.

    https://cran.r-project.org/package=glmnet.

  3. 3.

    ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/releases/release-5.0/.

References

  1. Ali, M., Aittokallio, T.: Machine learning and feature selection for drug response prediction in precision oncology applications. Biophys. Rev. 11(1), 31–39 (2018). https://doi.org/10.1007/s12551-018-0446-z

    Article  Google Scholar 

  2. Ali, M., Khan, S.A., Wennerberg, K., Aittokallio, T.: Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach. Bioinformatics 34(8), 1353–1362 (2017). https://doi.org/10.1093/bioinformatics/btx766

    Article  Google Scholar 

  3. Ammad-Ud-Din, M., Khan, S.A., Wennerberg, K., Aittokallio, T.: Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression. Bioinformatics 33(14), i359–i368 (2017). https://doi.org/10.1093/bioinformatics/btx266

    Article  Google Scholar 

  4. Barretina, J., et al.: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391), 603 (2012). https://doi.org/10.1038/nature11003

    Article  Google Scholar 

  5. Chang, Y., et al.: Cancer drug response profile scan (CDRscan): a deep learning model that predicts drug effectiveness from cancer genomic signature. Sci. Rep. 8(1), 1–11 (2018). https://doi.org/10.1038/s41598-018-27214-6

    Article  Google Scholar 

  6. Chen, J., Zhang, L.: A survey and systematic assessment of computational methods for drug response prediction. Brief. Bioinform. (2020). https://doi.org/10.1093/bib/bbz164

  7. Chen, K., Dong, H., Chan, K.S.: Reduced rank regression via adaptive nuclear norm penalization. Biometrika 100(4), 901–920 (2013). https://doi.org/10.1093/biomet/ast036

    Article  MathSciNet  MATH  Google Scholar 

  8. Costello, J.C., et al.: A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol. 32(12), 1202 (2014). https://doi.org/10.1038/nbt.2877

    Article  Google Scholar 

  9. Ammad-ud din, M., et al.: Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization. Bioinformatics 32(17), i455–i463 (2016). https://doi.org/10.1093/bioinformatics/btw433

  10. Dugger, S.A., Platt, A., Goldstein, D.B.: Drug development in the era of precision medicine. Nat. Rev. Drug Discov. 17(3), 183 (2018). https://doi.org/10.1038/nrd.2017.226

    Article  Google Scholar 

  11. Garnett, M.J., et al.: Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483(7391), 570 (2012). https://doi.org/10.1038/nature11005

    Article  Google Scholar 

  12. Geeleher, P., et al.: Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies. Genome Res. 27(10), 1743–1751 (2017). https://doi.org/10.1101/gr.221077.117

    Article  Google Scholar 

  13. Güvenç Paltun, B., Mamitsuka, H., Kaski, S.: Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches. Brief. Bioinform. (2019). https://doi.org/10.1093/bib/bbz153

  14. Hasin, Y., Seldin, M., Lusis, A.: Multi-omics approaches to disease. Genome Biol. 18(1), 83 (2017). https://doi.org/10.1186/s13059-017-1215-1

    Article  Google Scholar 

  15. Li, G., Liu, X., Chen, K.: Integrative multi-view regression: bridging group-sparse and low-rank models. Biometrics (2018). https://doi.org/10.1111/biom.13006

    Article  MATH  Google Scholar 

  16. Roses, A.D.: Pharmacogenetics in drug discovery and development: a translational perspective. Nat. Rev. Drug Discov. 7(10), 807–817 (2008). https://doi.org/10.1038/nrd2593

    Article  Google Scholar 

  17. Suphavilai, C., Bertrand, D., Nagarajan, N.: Predicting cancer drug response using a recommender system. Bioinformatics 34(22), 3907–3914 (2018). https://doi.org/10.1093/bioinformatics/bty452

    Article  Google Scholar 

  18. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Wang, L., Li, X., Zhang, L., Gao, Q.: Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. BMC Cancer 17(1), 513 (2017). https://doi.org/10.1186/s12885-017-3500-5

    Article  Google Scholar 

  20. Yadav, B., et al.: Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Sci. Rep. 4(1) (2014).https://doi.org/10.1038/srep05193

  21. Yang, W., et al.: Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucl. Acids Res. 41(D1), D955–D961 (2012). https://doi.org/10.1093/nar/gks1111

    Article  Google Scholar 

  22. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 68(1), 49–67 (2006). https://doi.org/10.1111/j.1467-9868.2005.00532.x

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Y., Yang, Q.: A survey on multi-task learning. CoRR abs/1707.08114 (2017). http://arxiv.org/abs/1707.08114

  24. Zhao, Z., Zucknick, M.: Structured penalized regression for drug sensitivity prediction. J. R. Stat. Soc. Ser. C (Appl. Stat.) (2020). https://doi.org/10.1111/rssc.12400

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to The Tien Mai or Leiv Rønneberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mai, T.T., Rønneberg, L., Zhao, Z., Zucknick, M., Corander, J. (2020). Learning Cancer Drug Sensitivities in Large-Scale Screens from Multi-omics Data with Local Low-Rank Structure. In: Cazzaniga, P., Besozzi, D., Merelli, I., Manzoni, L. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2019. Lecture Notes in Computer Science(), vol 12313. Springer, Cham. https://doi.org/10.1007/978-3-030-63061-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63061-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63060-7

  • Online ISBN: 978-3-030-63061-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics