Skip to main content

Gradient Extension of Classical Material Models: From Nuclear & Condensed Matter Scales to Earth & Cosmological Scales

Part of the Springer Tracts in Mechanical Engineering book series (STME)

Abstract

The various mathematical models developed in the past to interpret the behavior of natural and manmade materials were based on observations and experiments made at that time. Classical laws (such as Newton’s for gravity, Hooke’s for elasticity, Navier-Stokes for fluidity, Fick’s/Fourier’s for diffusion/heat transfer, Coulomb’s for electricity, as well as Maxwell’s for electromagnetism and Einstein’s for relativity) formed the basis for shaping our current technology and civilization. The discovery of new phenomena with the aid of recently developed experimental probes have led to various modifications of these laws across disciplines and scales: from subatomic and elementary particle physics to cosmology and from atomistic and nano/micro to macro/giga scales. The emergence of nanotechnology and the further advancement of space technology are ultimately connected with the design of novel tools for observation and measurements, as well as with the development of new methods and approaches for quantification and understanding. This chapter first reviews the author’s previously developed weakly nonlocal or gradient models for elasticity, diffusion and plasticity within a unifying internal length gradient (ILG) framework. It then proposes a similar extension for fluids and Maxwell’s equations of electromagnetism. Finally, it ventures a gradient modification of Newton’s law of gravity and examines its implications to some problems of elementary particle physics, also relevant to cosmology. Along similar lines, it suggests an analogous extension of London’s quantum mechanical potential to include both an “attractive” and a “repulsive” branch. It concludes with some comments on a fractional generalization of the ILG framework.

Dedicated to the unforgettable memory of my mentor James Serrin and my mentee Hussein Zbib. And to the inspiring work of my classmate Constantinos Vayenas and my daughter Katerina.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   117.69
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   164.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   164.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Fig. 1

Notes

  1. 1.

    An elaboration of this analogy is given in a forthcoming article by H. Hatzikirou and E.C. Aifantis: On the similarities between the W-A model for dislocations and the GoG model for cancer cells (in preparation).

  2. 2.

    Podolsky [B. Podolsky, A generalized electrodynamics Part I” Non-quantum. Phys. Rev. 62, 68–71 (1942); B. Podolsky, P. Schwed, Review of a generalized electrodynamics. Rev. Mod. Phys. 20, 40–50(1948)] has derived a generalization of Maxwell’s equations through a variational principle, leading to the appearance of \(\,{{\nabla }^{2}}\mathbf {B}\) in addition to \(\,{{\nabla }^{2}}\mathbf {E}\). This is also possible through the aforementioned analogy by replacing \(\mathbf {u}\) with \(\mathbf {u}-{{\ell }^{2}}{{\nabla }^{2}}\mathbf {u}\).

  3. 3.

    In fact, the question of exploring the consequences of such generalization to gravitation emerged during initial discussions with my daughter K.E. Aifantis during my visit in February 2019 to the University of to Florida at Gainesville and follow-up discussions with my former classmate C. Vayenas of the Academy of Athens during his visit in June 2019 to Thessaloniki. The initial numerical calculations reported herein started with the help of KEA’s students in Gainesville and completed with the assistance of my Ph.D. student K. Parisis in Thessaloniki. The same holds for the results on gradient interatomic potentials listed in Sect. 8.

  4. 4.

    For completeness, however, we may refer to the paper by Reid (R.V. Reid, Local phenomenological nucleon–nucleon potentials, Annal. Phys. 50, 411–448 (1968)), where the following expression, among others, is proposed \({{V}_{C}}=h\left[ {{e}^{-x/3}}-13.8\,{{e}^{-3x}}+138\,{{e}^{-6x}} \right] /x\), with \(h=10.463\) MeV and \(x=\mu r,\,\mu =mc/\hbar \approx 0.7\,\mathrm{f}{{\mathrm{m}}^{-1}}\).

  5. 5.

    The fact that solutions of Eq. (46) can be obtained in terms of solutions of Eq. (47) was first observed in [78] for the non-fractional GradEla and was extended later for more general fractional/fractal elastic materials in [114]

  6. 6.

    In fact, two preprints (by C. G. Vayenas, D. Tsousis, D. Grigoriou, K. Parisis and E. C. Aifantis) on Kaons and Deuteron are available and scheduled for arXiv and journal publication. Two more articels on gradient London’s potential (by K. Parisis, F. Shuang, B. Wang, P. Hu, A. Glannakoudakis and A. Konstantinidis: J. Appl. Math. Phys.) and its fractional extension (by K. Parisis and E. C. Aifantis: TMS Proc. 2021) are forthcoming

References

  1. Aifantis EC (2016) Internal length gradient (ILG) material mechanics across scales and disciplines. Adv Appl Mech 49:1–110

    CrossRef  Google Scholar 

  2. Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Technol 106:326–330

    CrossRef  Google Scholar 

  3. Aifantis EC (1987) The physics of plastic deformation. Int J Plast 3:211–247

    CrossRef  MATH  Google Scholar 

  4. Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30:1279–1299

    CrossRef  MATH  Google Scholar 

  5. Aifantis EC (1995) Pattern formation in plasticity. Int J Eng Sci 33:2161–2178

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Aifantis EC (2009) On scale invariance in anisotropic plasticity, gradient plasticity and gradient elasticity. Int J Eng Sci 47:1089–1099

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Aifantis EC (2011) On the gradient approach - relation to Eringen’s nonlocal theory. Int J Eng Sci 49:1367–1377

    CrossRef  MathSciNet  Google Scholar 

  8. Aifantis EC (2011) Gradient nanomechanics: applications to deformation, fracture, and diffusion in manopolycrystals. Metall Mater Trans A 42:2985–2998

    CrossRef  Google Scholar 

  9. Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48:1962–1990

    CrossRef  Google Scholar 

  10. Aifantis EC (2014) Gradient material mechanics: perspectives and prospects. Acta Mech 225:999–1012

    CrossRef  MathSciNet  Google Scholar 

  11. Aifantis EC, Serrin JB (1983) The mechanical theory of fluid interfaces and Maxwell’s rule. J Coll Inter Sci 96:517–529

    CrossRef  Google Scholar 

  12. Aifantis EC, Serrin JB (1983) Equilibrium solutions in the mechanical theory of fluid microstructures. J Coll Inter Sci 96:530–547

    CrossRef  Google Scholar 

  13. Van der Waals JD (1895) Théorie thermodynamique de la capillarité, dans l’hypothèse d’une variation continue de densité. Arch Neerl Sci Exactes Nat 28:121–209

    MATH  Google Scholar 

  14. Ter Haar D (Ed) (1965) Collected papers of L.D. Landau. Pergamon, London

    Google Scholar 

  15. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28:258–267

    Google Scholar 

  16. Cahn JW (1959) Free energy of a nonuniform system. II. Thermodynamic basis. J Chem Phys 30:1121–1124

    Google Scholar 

  17. Kevrekidis IG, Gear CW, Hyman JM, Kevrekidis PJ, Runborg O, Theodoropoulos C (2003) Equation-free, coarse-grained multiscale computation: enabling macroscopic simulators to perform system-level analysis. Comm Math Sci 1:715–762

    CrossRef  MATH  Google Scholar 

  18. Kevrekidis IG, Samaey G (2009) Equation-free multiscale computation: algorithms and applications. Annu Rev Phys Chem 60:321–344

    CrossRef  Google Scholar 

  19. Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52:479–487

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. Tsallis C (2009) Entropy. In: Meyers RA (Ed) Encyclopedia of complexity and systems science. Springer, New York

    Google Scholar 

  21. Tsallis C (2009) Introduction to nonextensive statistical mechanics: approaching a complex world. Springer, Berlin

    MATH  Google Scholar 

  22. Greer JR, de Hosson JThM (2011) Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mat Sci 56:654–724

    CrossRef  Google Scholar 

  23. Aifantis KE, Hackney SA (eds) (2010) High energy density lithium batteries: materials. Engineering, Applications (Wiley-VCH

    Google Scholar 

  24. Ryu I, Choi JW, Cui Y, Nix Y (2011) Size-dependent fracture of Si nanowire battery anodes. J Mech Phys Solids 59:1717–1730

    CrossRef  Google Scholar 

  25. Cui Z, Gao F, Qu J (2013) Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries. J Mech Phys Solids 61:293–310

    CrossRef  MathSciNet  Google Scholar 

  26. Cheng YT, Verbrugge MW, Desphande R (2013) Understanding diffusion-induced stresses in lithium ion battery electrodes, In: Kocks A, Wang J (Eds) IUTAM symposium on surface effects in the mechanics of nanomaterials and heterostrucures. Springer, Dordrecht

    Google Scholar 

  27. Walgraef D, Aifantis EC (1985) Dislocation patterning in fatigued metals as a result of dynamical instabilities. J Appl Phys 58:688–691

    CrossRef  Google Scholar 

  28. Pontes J, Walgraef D, Aifantis EC (2006) On dislocation patterning: multiple slip effects in the rate equation approach. Int J Plasticity 22:1486–1505

    CrossRef  MATH  Google Scholar 

  29. Spiliotis KG, Russo L, Siettos C, Aifantis EC (2018) Analytical and numerical bifurcation analysis of dislocation pattern formation of the Walgraef-Aifantis model. Int J Non-Linear Mech 102:41–52

    CrossRef  Google Scholar 

  30. Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A (2010) ‘Go or Grow’: the key to the emergence of invasion in tumour progression? Math Med Biol 29:49–65

    CrossRef  MathSciNet  MATH  Google Scholar 

  31. Boettger K, Hatzikirou H, Voss-Böhme A, Cavalcanti-Adam EA, Herrero MA, Deutsch A (2015) An emerging Allee effect is critical for tumor initiation and persistence. PLoS Comp Biol 11:E1004366

    CrossRef  Google Scholar 

  32. Murray JD (2002) Mathematical biology I: an introduction. Springer, New York

    CrossRef  MATH  Google Scholar 

  33. Murray JD (2003) Mathematical Biology II: spatial models and biomedical applications. Springer, New York

    CrossRef  MATH  Google Scholar 

  34. Aifantis EC, Hirth JP (eds) (1985) The mechanics of dislocations. ASM, Metals Park

    Google Scholar 

  35. Aifantis EC, Walgraef D, Zbib HM (Eds) Material instabilities. Special Issue of Res Mechanica 23:97–305

    Google Scholar 

  36. Estrin Y, Kubin LP, Aifantis EC (1993) Introductory remarks to the viewpoint set in propagative plastic instabilities. Scripta Met Mater 29:1147–1150

    CrossRef  Google Scholar 

  37. Aifantis EC (2003) Update on a class of gradient theories. Mech Mater 35:259–280

    CrossRef  Google Scholar 

  38. Kubin LP (1993) Dislocation patterning. In: Mughrabi H (Ed) Plastic deformation and fracture of materials. WILEY-VCH

    Google Scholar 

  39. Kubin LP, Fressengeas C, Ananthakrishna G (2002) Collective behaviour of dislocations in plasticity. In: Nabarro FRN and Duesbery MS (Eds) Dislocations in solids. Elsevier

    Google Scholar 

  40. Ananthakrishna G (2007) Current theoretical approaches to collective behavior of dislocations. Phys Rep 440:113–259

    CrossRef  MathSciNet  Google Scholar 

  41. Sauzay M, Kubin LP (2011) Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals. Prog Mater Sci 56:725–784

    CrossRef  Google Scholar 

  42. Carpinteri A (ed) (1996) Size-scale effects in the failure mechanisms of materials and structures. CRC Press

    Google Scholar 

  43. Muhlhaus HB (ed) (1995) Continuum models for materials with microstructure. Wiley, Chichester

    MATH  Google Scholar 

  44. de Borst R, van der Giessen E (eds) (1998) Material instabilities in solids. Wiley, Chichester

    Google Scholar 

  45. Gutkin MY, Aifantis EC (1999) Dislocations and disclinations in gradient elasticity. Phys Stat Sol B 214:245–284

    CrossRef  Google Scholar 

  46. Lazar M, Maugin GA, Aifantis EC (2006) Dislocations in second strain gradient elasticity. Int J Sol Struct 43:1787–1817

    CrossRef  MATH  Google Scholar 

  47. Aifantis EC (2014) On non-singular GRADELA crack fields. Theor App Mech Lett 4:051005

    CrossRef  Google Scholar 

  48. Aifanti EC, Gittus J (eds) (1986) Phase transformations. Elsevier, New York

    Google Scholar 

  49. Suresh S (1991) Fatigue of materials. Cambridge University Press, Cambridge

    Google Scholar 

  50. Walgraef D (1997) Spatio-temporal pattern formation. Springer, New York

    CrossRef  MATH  Google Scholar 

  51. Gutkin MY, Ovid’ko IA (2004) Plastic deformation in nanocrystalline materials. Springer, Berlin

    CrossRef  Google Scholar 

  52. Ghoniem N, Walgraef D (2008) Instabilities and self-organization in materials. Oxford Science Publications, Oxford

    CrossRef  MATH  Google Scholar 

  53. Gurtin ME, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, New York

    CrossRef  Google Scholar 

  54. Po G, Lazar M, Seif D, Ghoniem N (2014) Singularity-free dislocation dynamics with strain gradient elasticity. J Mech Phys Solids 68:161–178

    CrossRef  MathSciNet  MATH  Google Scholar 

  55. Isaksson P, Dumont PJJ, du Roscoat SR (2012) Crack growth in planar elastic fiber materials. Int J Solids Struct 49:1900–1907

    CrossRef  Google Scholar 

  56. Isaksson P, Hägglund R (2013) Crack-tip fields in gradient enhanced elasticity. Eng Fract Mech 97:186–192

    CrossRef  Google Scholar 

  57. Bagni C, Askes H, Aifantis EC (2017) Gradient-enriched finite element methodology for axisymmetric problems. Acta Mech 228:1423–1444

    CrossRef  MathSciNet  MATH  Google Scholar 

  58. Tsagrakis I, Aifantis EC (2018) Gradient elasticity effects on the two-phase lithiation of LIB anodes. In: Altenbach H, Pouget J, Rousseau M, Collet B, Michelitsch T (Eds) Generalized models and non-classical approaches in complex materials 2. Springer

    Google Scholar 

  59. Konstantinidis AA, Aifantis KE, de Hosson JThM (2014) Capturing the stochastic mechanical behavior of micro and nanopillars. Mater Sci Eng, A 597:89–94

    CrossRef  Google Scholar 

  60. Konstantinidis AA, Zhang X, Aifantis EC (2015) On the combined gradient-stochastic plasticity model: application to Mo-micropillar compression. AIP Conf Proc 1646:3–9

    CrossRef  Google Scholar 

  61. Zaiser M, Avlonitis M, Aifantis EC (1998) Stochastic and deterministic aspects of strain localization during cyclic plastic deformation. Acta Mater 48:4143–4151

    CrossRef  Google Scholar 

  62. Avlonitis M, Zaiser M, Aifantis EC (2000) Some exactly solvable models for the statistical evolution of internal variables during plastic deformation. Prob Eng Mech 15:131–138

    CrossRef  Google Scholar 

  63. Chattopadhyay AK, Aifantis EC (2016) Stochastically forced dislocation density distribution in plastic deformation. Phys Rev E 94:022139

    CrossRef  Google Scholar 

  64. Chattopadhyay AK, Aifantis EC (2017) Double diffusivity model under stochastic forcing. Phys Rev E 95:052134

    CrossRef  Google Scholar 

  65. Zaiser M, Aifantis EC (2003) Avalanches and slip patterning in plastic deformation. J Mech Behav Mater 14:255–270

    CrossRef  Google Scholar 

  66. Zaiser M, Aifantis EC (2006) Randomness and slip avalanches in gradient plasticity. Int J Plasticity 22:1432–1455

    CrossRef  MATH  Google Scholar 

  67. Li H, Ngan AHW, Wang MG (2005) Continuous strain bursts in crystalline and amorphous metals during plastic deformation by nanoindentation. J Mater Res 20:3072–3081

    CrossRef  Google Scholar 

  68. Iliopoulos AC, Nikolaidis NS, Aifantis EC (2015) Analysis of serrations and shear bands fractality in UFGs. J Mech Behav Mater 24:1–9

    CrossRef  Google Scholar 

  69. Iliopoulos AC, Aifantis EC (2018) Tsallis q-triplet, intermittent turbulence and Portevin-Le Chatelier effect. Phys A 498:17–32

    CrossRef  MathSciNet  Google Scholar 

  70. Kawazoe H, Yoshida M, Basinski ZS, Niewczas M (1999) Dislocation microstructures in fine-grained Cu polycrystals fatigued at low amplitude. Scripta Mater 40:639–644

    CrossRef  Google Scholar 

  71. Wang D, Volkert CA, Kraft O (2008) Effect of length scale on fatigue life and damage formation in thin Cu films. Mat Sci Eng A 493:267–273

    CrossRef  Google Scholar 

  72. Unger DJ, Gerberich WW, Aifantis EC (1982) Further remarks on the implications of steady state stress assisted diffusion on environmental cracking. Scripta Metall 16:1059–1064

    CrossRef  Google Scholar 

  73. Silber G, Trostel R, Alizadeh M, Benderoth G (1998) A continuum mechanical gradient theory with applications to fluid mechanics. J de Phy 4(8):365–373

    Google Scholar 

  74. Fried E, Gurtin ME (2006) Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales. Arch Rat Mech Anal 182:513–554

    CrossRef  MathSciNet  MATH  Google Scholar 

  75. Adams JM, Fielding SM, Olmsted PD (2008) The interplay between boundary conditions and flow geometries in shear banding: hysteresis, band configurations, and surface transitions. J Nonnewton Fluid Mech 151:101–118

    CrossRef  MATH  Google Scholar 

  76. Cates ME, Fielding SM (2006) Rheology of giant micelles. Adv Phys 55:799–879

    CrossRef  Google Scholar 

  77. Dhont JKG, Briels WJ (2008) Gradient and vorticity banding. Rheol Acta 47:257–281

    CrossRef  Google Scholar 

  78. Ru CQ, Aifantis EC (1993) A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech 101:59–68

    CrossRef  MathSciNet  MATH  Google Scholar 

  79. Giusteri GG, Fried E (2014) Slender-body theory for viscous flow via dimensional reduction and hyperviscous regularization. Meccanica 49:2153–2167

    CrossRef  MathSciNet  MATH  Google Scholar 

  80. Vardoulakis I, Aifantis EC (1989) Gradient dependent dilatancy and its implications in shear banding and liquefaction. Ingenieur-Archiv 59:197–208

    CrossRef  Google Scholar 

  81. Vardoulakis I, Muhlhaus HB, Aifantis EC (1991) Continuum models for localized deformations in pressure sensitive materials. In: Beer G, Booker JR, Carter J (Eds) Computer methods and advances in geomechanics. Balkema Publishers, Rotterdam

    Google Scholar 

  82. Vardoulakis I, Aifantis EC (1991) A gradient flow theory of plasticity for granular materials. Acta Mech 87:197–217

    CrossRef  MathSciNet  MATH  Google Scholar 

  83. Vardoulakis I, Aifantis EC (1994) On the role of microstructure in the behavior of soils: Effects of higher order gradients and internal inertia. Mech Mat 18:151–158

    CrossRef  Google Scholar 

  84. Oka F, Yashima A, Sawada K, Aifantis EC (2000) Instability of gradient-dependent elastoviscoplastic model for clay and strain localization. Comp Method Appl Mech Eng 183:67–86

    CrossRef  MATH  Google Scholar 

  85. di Prisco C, Imposimato S, Aifantis EC (2002) A visco-plastic constitutive model for granular soils modified according to non-local and gradient approaches. Int J Num Anal Meth Geomech 26:121–138

    CrossRef  MATH  Google Scholar 

  86. Fyffe B, Schwerdtfeger J, Blackford JR, Zaiser M, Konstantinidis A, Aifantis EC (2007) Fracture toughness of snow: the influence of layered microstructure. J Mech Behav Mater 18:195–215

    CrossRef  Google Scholar 

  87. Konstantinidis A, Cornetti P, Pugno N, Aifantis EC (2009) Application of gradient theory and quantized fracture mechanics in snow avalanches. J Mech Behav Mater 19:39–48

    CrossRef  Google Scholar 

  88. Haoxiang C, Qi C, Peng L, Kairui L, Aifantis EC (2015) Modeling the zonal disintegration of rocks near deep level tunnels by gradient internal variable continuous phase transition theory. J Mech Behav Mater 24:161–171

    CrossRef  Google Scholar 

  89. Qi C, Wei X, Hongsen W, Aifantis EC (2015) On temporal-structural dynamic failure criteria for rocks. J Mech Behav Mater 24:173–181

    CrossRef  Google Scholar 

  90. Efremidis G, Avlonitis M, Konstantinidis A, Aifantis EC (2017) A statistical study of precursor activity in earthquake-induced landslides. Comput Geotechn 81:137–142

    CrossRef  Google Scholar 

  91. Chen H, Qi C, Efremidis G, Dorogov M, Aifantis EC (2018) Gradient elasticity and size effect for the borehole problem. Acta Mech 229:3305–3318

    CrossRef  MathSciNet  MATH  Google Scholar 

  92. Ord A, Hobbs BE (2010) Fracture pattern formation in frictional, cohesive, granular material. Philos Trans R Soc A 368:95–118

    CrossRef  Google Scholar 

  93. Yue YM, Xu KY, Aifantis EC (2014) Microscale size effects on the electromechanical coupling in piezoelectric material for anti-plane problem. Smart Mater Struct 23:125043

    CrossRef  Google Scholar 

  94. Yue YM, Xu KY, Chen T, Aifantis EC (2015) Size effects on magnetoelectric response of multiferroic composite with inhomogeneities. Phys B 478:36–42

    CrossRef  Google Scholar 

  95. Yue YM, Xu KY, Aifantis EC (2015) Strain gradient and electric field gradient effects in piezoelectric cantilever beams. J Mech Behav Mater 24:121–127

    CrossRef  Google Scholar 

  96. Tarasov VE, Trujillo JJ (2013) Fractional power-law spatial dispersion in electrodynamics. Annal Phys 334:1–23

    CrossRef  MathSciNet  Google Scholar 

  97. Truesdell C, Toupin R (1960) The classical field theories. In: Flügge S (Ed) Principles of classical mechanics and field theory/Prinzipien der Klassischen Mechanik und Feldtheorie. Springer, Berlin

    Google Scholar 

  98. Zimmerman JA, Webb EB, Hoyt JJ, Jones RE, Klein PA, Bammann DJ (2004) Calculation of stress in atomistic simulation. Model Simul Mater Sci Eng 12:S319–S332

    CrossRef  Google Scholar 

  99. Maranganti R, Sharma P (2010) Revisiting quantum notions of stress. Proc Royal Soc A 466:2097–2116

    CrossRef  MathSciNet  MATH  Google Scholar 

  100. Davies H (2000) The physics of low-dimensional semiconductors. Cambridge University Press, Cambridge

    Google Scholar 

  101. Zhang X, Gharbi M, Sharma P, Johnson HT (2009) Quantum field induced strains in nanostructures and prospects for optical actuation. Int J Solids Struct 46:3810–3824

    CrossRef  MATH  Google Scholar 

  102. Vayenas CG, Souentie S (2012) Gravity, Special Relativity, and the Strong Force. Springer, Boston

    CrossRef  Google Scholar 

  103. Vayenas CG, Souentie S, Fokas A (2014) A Bohr-type model of a composite particle using gravity as the attractive force. Phys A 405:360–379

    CrossRef  Google Scholar 

  104. London F (1930) Zur Theorie und Systematik der Molekularkräfte. Z Physik 63:245–279

    CrossRef  MATH  Google Scholar 

  105. London F (1937) The general theory of molecular forces. Trans Faraday Soc 33:8–26

    CrossRef  Google Scholar 

  106. Jones JE (1924) On the determination of molecular fields I. From the variation of the viscosity of a gas with temperature. Phil Trans A 106:441–462

    Google Scholar 

  107. Israelachvili JN (2011) Intermolecular and surface forces. Academic Press

    Google Scholar 

  108. Parson JM, Siska PE, Lee YT (1972) Intermolecular potentials from crossed-beam differential elastic scattering measurements. IV. Ar+Ar. J Chem Phys 56:1511–1516

    Google Scholar 

  109. Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262–5271

    CrossRef  Google Scholar 

  110. Lazar M, Maugin GA, Aifantis EC (2006) On the theory of nonlocal elasticity of bi- Helmholtz type and some applications. Int J Solids Struct 43:1404–1421

    CrossRef  MathSciNet  MATH  Google Scholar 

  111. Kioseoglou J, Dimitrakopulos GP, Komninou Ph, Karakostas T, Aifantis EC (2008) Dislocation core investigation by geometric phase analysis and the dislocation density tensor. J Phys D 41:035408

    CrossRef  Google Scholar 

  112. Aifantis EC (2009) Non-singular dislocation fields. IOP Conf. Series 3:0712026

    Google Scholar 

  113. Tarasov VE, Aifantis EC (2014) Toward fractional gradient elasticity. J Mech Behav Mater 23:41–46

    CrossRef  Google Scholar 

  114. Tarasov VE, Aifantis EC (2015) Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality. Commun Nonlinear Sci Numer Simulat 22:197–227

    CrossRef  MathSciNet  MATH  Google Scholar 

  115. Aifantis EC (2019) Fractional generalizations of gradient mechanics, In: Tarasov VE (Ed) Handbook of fractional calculus with applications. De Gruyter, Berlin

    Google Scholar 

  116. Tarasov VE, Aifantis EC (2019) On fractional and fractal formulations of gradient linear and nonlinear elasticity. Acta Mech 230:2043–2070

    CrossRef  MathSciNet  MATH  Google Scholar 

  117. Parisis K, Konstantopoulos I, Aifantis EC (2018) Nonsingular solutions of GradEla models for dislocations: an extension to fractional GradEla. J Micromech Mol Phys 3:1840013

    CrossRef  Google Scholar 

  118. Samko S, Kilbas A, Marichev O (1987) Integrals and derivatives of fractional order and applications. Nauka i Tehnika, Minsk

    MATH  Google Scholar 

  119. Kilbas A, Srivastava M, Trujillo J (2006) Theory and applications of fractional differential equations. Elsevier

    Google Scholar 

  120. Mathai A, Saxena RK, Haubold HJ (2010) The H-function: theory and applications. Springer, New York

    CrossRef  MATH  Google Scholar 

  121. Eringen AC (1999) Microcontinuum field theories I: foundations and solids. Springer, New York

    CrossRef  MATH  Google Scholar 

  122. Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:295–361

    CrossRef  MATH  Google Scholar 

  123. Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49:2245–2271

    CrossRef  MATH  Google Scholar 

  124. Gurtin ME, Anand L (2009) Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J Mech Phys Solids 57:405–421

    CrossRef  MathSciNet  MATH  Google Scholar 

  125. Gao HJ, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity - I. Theory J Mech Phys Solids 47:1239–1263

    CrossRef  MathSciNet  MATH  Google Scholar 

  126. Nix WD, Gao HJ (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425

    CrossRef  MATH  Google Scholar 

  127. de Borst R, Muhlhaus HB (1992) Gradient-dependent plasticity - formulation and algorithmic aspects. Int J Numer Method Eng 35:521–539

    CrossRef  MATH  Google Scholar 

  128. de Borst R, Pamin J, Sluys LJ (1995) Computational issues in gradient plasticity, In: Mühlhaus HB (Ed) Continuum models for materials with microstructure. Wiley, pp. 159–200

    Google Scholar 

  129. Geers MGD, Peerlings RHJ, Brekelmans WAM, de Borst R (2000) Phenomenological nonlocal approaches based on implicit gradient-enhanced damage. Acta Mech 144:1–15

    CrossRef  MATH  Google Scholar 

  130. Peerlings RHJ, Poh LH, Geers MGD (2012) An implicit gradient plasticity-damage theory for predicting size effects in hardening and softening. Eng Fract Mech 95:2–12

    CrossRef  Google Scholar 

  131. Willis JR (2019) Some forms and properties of models of strain-gradient plasticity. J Mech Phys Solids 123:348–356

    CrossRef  MathSciNet  Google Scholar 

  132. Aifantis KE, Willis JR (2005) The role of interfaces in enhancing the yield strength of composites and polycrystals. J Mech Phys Solids 53:1047–1070

    CrossRef  MathSciNet  MATH  Google Scholar 

  133. Polizzotto C (2003) Unified thermodynamic framework-for nonlocal/gradient continuum theories. Eur J Mech A Solid 22:651–668

    CrossRef  MathSciNet  MATH  Google Scholar 

  134. Polizzotto C (2009) Interfacial energy effects within the framework of strain gradient plasticity. Int J Solids Struct 46:1685–1694

    CrossRef  MATH  Google Scholar 

  135. Voyiadjis GZ, Song Y (2019) Strain gradient continuum plasticity theories: Theoretical, numerical and experimental investigations. Int J Plasticity 121:21–75

    CrossRef  Google Scholar 

  136. Goddard JD (2018) On linear non-local thermo-viscoelastic waves in fluids. Mat Mech Compl Sys 6:321–338

    CrossRef  MathSciNet  MATH  Google Scholar 

  137. Goddard JD (2017) On the stability of the \(\mu (I)\) rheology for granular flow. J Fluid Mech 833:302–331

    CrossRef  MathSciNet  MATH  Google Scholar 

  138. Kamrin K, Koval G (2012) Nonlocal constitutive relation for steady granular flow. Phys Rev Lett 108:178301

    CrossRef  Google Scholar 

  139. Henann DL, Kamrin K (2013) A predictive, size-dependent continuum model for dense granular flows. Proc Natl Acad Sci USA 110:6730–6735

    CrossRef  MathSciNet  MATH  Google Scholar 

  140. Forterre Y, Pouliquen O (2008) Flows of dense granular media. Annu Rev Fluid Mech 40:1–24

    CrossRef  MathSciNet  MATH  Google Scholar 

  141. Fenistein D, van Hecke M (2003) Wide shear zones in granular bulk flow. Nature 425:256

    CrossRef  Google Scholar 

  142. Dijksman JA, Wortel GH, van Dellen LTH, Dauchot O, van Hecke M (2011) Jamming, yielding, and rheology ofweakly vibrated granular media. Phys Rev Lett 107:108303

    CrossRef  Google Scholar 

  143. Bocquet L, Colin A, Ajdari A (2009) Kinetic theory of plastic flow in soft gassy materials. Phys Rev Lett 103:036001

    CrossRef  Google Scholar 

  144. Fischbach E, Sudarsky D, Szafer A, Talmadge C, Aronson SH (1986) Reanalysis of the Eötös experiment. Phys Rev Lett 56:3–6

    CrossRef  Google Scholar 

  145. Fischbach E (2015) The fifth force: a personal history. Eur Phys J H 40:385–467

    CrossRef  Google Scholar 

  146. Bardhan JP (2013) Gradient models in molecular biophysics: progress, challenges, opportunities. J Mech Behav Mater 22:169–184

    CrossRef  Google Scholar 

Download references

Acknowledgements

The work was greatly benefited from the RISE/FRAMED project no. 734485 (https://cordis.europa.eu/project/rcn/207050/factsheet/en) for which Aristotle University of Thessaloniki (AUTh) acts as coordinator. In this connection, thanks are extended to all beneficiary nodes and international partners of FRAMED. The gradient fluids section is a topic of the RISE/ATM2BT project no. 824022 (https://cordis.europa.eu/project/rcn/219192/factsheet/en) for which AUTh is a beneficiary. This section was included in anticipation of follow-up joint work between AUTh, Akita Univeristy/Japan and Aston University/UK (which acts as project’s ATM2BT coordinator). The remaining of the sections were benefited from discussions with my former classmate C. Vayenas, my daughter K.E. Aifantis and my Ph.D. student K. Parisis, as well as by the continuous support of my former Ph.D. students A. Konstantinidis (successor of my Lab in Thessaloniki) and I. Tsagrakis (current collaborator in Crete). Finally, the author is also gratefully acknowledging the support of Deutsche Forschungsgemeinschaft/DFG grant No. 377472739/GRK 2423/1-2019 at Friedrich-Alexander University (FAU) where he has recently been appointed as a Mercator Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias C. Aifantis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aifantis, E.C. (2021). Gradient Extension of Classical Material Models: From Nuclear & Condensed Matter Scales to Earth & Cosmological Scales. In: Ghavanloo, E., Fazelzadeh, S.A., Marotti de Sciarra, F. (eds) Size-Dependent Continuum Mechanics Approaches. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-63050-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63050-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63049-2

  • Online ISBN: 978-3-030-63050-8

  • eBook Packages: EngineeringEngineering (R0)