Skip to main content

Reciprocal Correlations of Inflammatory and Calcium Signaling in Asthma Pathogenesis

  • Chapter
  • First Online:
Lung Inflammation in Health and Disease, Volume I

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1303))

Abstract

Asthma is a chronic disease characterized by airway hyperresponsiveness, which can be caused by exposure to an allergen, spasmogen, or be induced by exercise. Despite its prevalence, the exact mechanisms by which the airway becomes hyperresponsive in asthma are not fully understood. There is evidence that myosin light-chain kinase is overexpressed, with a concomitant downregulation of myosin light-chain phosphatase in the airway smooth muscle, leading to sustained contraction. Additionally, the sarco/endoplasmic reticulum ATPase may be affected by inflammatory cytokines, such as IL-4, IL-5, IL-13, and TNF-α, which are all associated with asthmatic airway inflammation. IL-13 and TNF-α seem to promote sodium/calcium exchanger 1 overexpression as well. Anyhow, the exact mechanisms beyond these dysregulations need to be clarified. Of note, multiple studies show an association between asthma and the ORMLD3 gene, opening new perspectives to future potential gene therapies. Currently, several treatments are available for asthma, although many of them have systemic side effects, or are not effective in patients with severe asthma. Furthering our knowledge on the molecular and pathophysiological mechanisms of asthma plays a pivotal role for the development of new and more targeted treatments for patients who cannot totally benefit from the current therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ca2+]i:

Intracellular Calcium Concentration

AHR:

Airway Hyperresponsiveness

ASM/ASMC:

Airway Smooth Muscle/Airway Smooth Muscle Cell

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

CICR:

Calcium-Induced Calcium Release

CRTH2:

Chemoattractant receptor-homologous molecule

DAG:

Diacylglycerol

DHPR:

Dihydropyridine Receptor

FKBP12.6:

FK-506 Binding Protein

GPCR:

G-Protein Coupled Receptor

IL:

Interleukin

IP3:

Inositol Triphosphate

KCa:

Calcium-Dependent Potassium Channel

MLCK:

Myosin Light-Chain Kinase

MLCP:

Myosin Light-Chain Phosphatase

NCX:

Sodium/Calcium Exchanger

PGD2:

Prostaglandin D2

PMCA:

Plasma Membrane Calcium ATPase

ROCK:

RhoA-kinase

ROS:

Reactive Oxygen Species

RyR:

Ryanodine Receptors

SBB:

Superficial Buffer Barrier

SERCA:

Sarco/endoplasmic Reticulum ATPase

SR:

Sarcoplasmic Reticulum

TMEM16A:

Transmembrane Protein 16A

TNF-α:

Tumor Necrosis Factor-Alpha

UPR:

Unfolded Protein Response

References

  1. Miao K, et al. Update on the role of endoplasmic reticulum stress in asthma. Am J Transl Res. 2020;12(4):1168–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Taylor DR, et al. A new perspective on concepts of asthma severity and control. Eur Respir J. 2008;32(3):545–54.

    Article  PubMed  CAS  Google Scholar 

  3. Frey A, et al. More than just a barrier: the immune functions of the airway epithelium in asthma pathogenesis. Front Immunol. 2020;11:761.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Vos T, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2163–96.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gibson GJ, et al. Respiratory health and disease in Europe: the new European lung white book. Eur Respir J. 2013;42(3):559–63.

    Article  PubMed  Google Scholar 

  6. Nunes C, Pereira AM, Morais-Almeida M. Asthma costs and social impact. Asthma Res Pract. 2017;3:1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nurmagambetov T, Kuwahara R, Garbe P. The economic burden of asthma in the United States, 2008-2013. Ann Am Thorac Soc. 2018;15(3):348–56.

    Article  PubMed  Google Scholar 

  8. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45–56.

    Article  PubMed  CAS  Google Scholar 

  9. Choy DF, et al. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci Transl Med. 2015;7(301):301ra129.

    Article  PubMed  CAS  Google Scholar 

  10. Boulet LP. Airway remodeling in asthma: update on mechanisms and therapeutic approaches. Curr Opin Pulm Med. 2018;24(1):56–62.

    Article  PubMed  Google Scholar 

  11. Fehrenbach H, Wagner C, Wegmann M. Airway remodeling in asthma: what really matters. Cell Tissue Res. 2017;367(3):551–69.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lam M, Lamanna E, Bourke JE. Regulation of airway smooth muscle contraction in health and disease. Adv Exp Med Biol. 2019;1124:381–422.

    Article  PubMed  CAS  Google Scholar 

  13. Koopmans T, et al. Ca2+ handling and sensitivity in airway smooth muscle: emerging concepts for mechanistic understanding and therapeutic targeting. Pulm Pharmacol Ther. 2014;29(2):108–20.

    Article  PubMed  CAS  Google Scholar 

  14. Reyes-Garcia J, et al. Maintenance of intracellular Ca2+ basal concentration in airway smooth muscle (review). Int J Mol Med. 2018;42(6):2998–3008.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Alvarez-Santos MD, et al. Regulation of myosin light-chain phosphatase activity to generate airway smooth muscle hypercontractility. Front Physiol. 2020;11:701.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gash MC, et al. Physiology, muscle contraction. In StatPearls. 2020: Treasure Island (FL).

    Google Scholar 

  17. Min J, et al. Src modulates contractile vascular smooth muscle function via regulation of focal adhesions. J Cell Physiol. 2012;227(11):3585–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. ZhuGe R, et al. Ca2+ sparks activate K+ and cl- channels, resulting in spontaneous transient currents in Guinea-pig tracheal myocytes. J Physiol. 1998;513(Pt 3):711–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lees-Green R, et al. Computational modeling of anoctamin 1 calcium-activated chloride channels as pacemaker channels in interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol. 2014;306(8):G711–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wang IY, et al. A mathematical analysis of agonist- and KCl-induced Ca(2+) oscillations in mouse airway smooth muscle cells. Biophys J. 2010;98(7):1170–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Feske S, et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441(7090):179–85.

    Article  PubMed  CAS  Google Scholar 

  22. MacLennan DH, Kranias EG. Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol. 2003;4(7):566–77.

    Article  PubMed  CAS  Google Scholar 

  23. Sathish V, et al. Effect of proinflammatory cytokines on regulation of sarcoplasmic reticulum Ca2+ reuptake in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2009;297(1):L26–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hall IP. Second messengers, ion channels and pharmacology of airway smooth muscle. Eur Respir J. 2000;15(6):1120–7.

    Article  PubMed  CAS  Google Scholar 

  25. Ay B, et al. Store-operated Ca2+ entry in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2004;286(5):L909–17.

    Article  PubMed  CAS  Google Scholar 

  26. Croisier H, et al. Activation of store-operated calcium entry in airway smooth muscle cells: insight from a mathematical model. PLoS One. 2013;8(7):e69598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Eisner DA, Lederer WJ. Na-Ca exchange: stoichiometry and electrogenicity. Am J Phys. 1985;248(3 Pt 1):C189–202.

    Article  CAS  Google Scholar 

  28. Khananshvili D. The SLC8 gene family of sodium-calcium exchangers (NCX) - structure, function, and regulation in health and disease. Mol Asp Med. 2013;34(2–3):220–35.

    Article  CAS  Google Scholar 

  29. Algara-Suarez P, et al. The 1.3 isoform of Na+-Ca 2+ exchanger expressed in Guinea pig tracheal smooth muscle is less sensitive to KB-R7943. J Physiol Biochem. 2010;66(2):117–25.

    Article  PubMed  CAS  Google Scholar 

  30. Janssen LJ, Walters DK, Wattie J. Regulation of [Ca2+]i in canine airway smooth muscle by Ca(2+)-ATPase and Na+/Ca2+ exchange mechanisms. Am J Phys. 1997;273(2 Pt 1):L322–30.

    CAS  Google Scholar 

  31. Sathish V, et al. Sodium-calcium exchange in intracellular calcium handling of human airway smooth muscle. PLoS One. 2011;6(8):e23662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Strassheim D, et al. RhoGTPase in vascular disease. Cells. 2019;8(6)

    Google Scholar 

  33. Wang L, et al. Upregulation of smooth muscle Rho-kinase protein expression in human asthma. Eur Respir J. 2020:55(3).

    Google Scholar 

  34. Kasahara DI, et al. ROCK insufficiency attenuates ozone-induced airway hyperresponsiveness in mice. Am J Physiol Lung Cell Mol Physiol. 2015;309(7):L736–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Janssen LJ, Killian K. Airway smooth muscle as a target of asthma therapy: history and new directions. Respir Res. 2006;7:123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mahn K, et al. Ca(2+) homeostasis and structural and functional remodelling of airway smooth muscle in asthma. Thorax. 2010;65(6):547–52.

    Article  PubMed  Google Scholar 

  37. Mahn K, et al. Diminished sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma. Proc Natl Acad Sci USA. 2009;106(26):10775–80.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Berridge MJ. Smooth muscle cell calcium activation mechanisms. J Physiol. 2008;586(21):5047–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kushnir A, Wajsberg B, Marks AR. Ryanodine receptor dysfunction in human disorders. Biochim Biophys Acta Mol Cell Res. 2018;1865(11 Pt B):1687–97.

    Article  PubMed  CAS  Google Scholar 

  40. Danielsson J, et al. Agonism of the TMEM16A calcium-activated chloride channel modulates airway smooth muscle tone. Am J Physiol Lung Cell Mol Physiol. 2020;318(2):L287–95.

    Article  PubMed  CAS  Google Scholar 

  41. Pelaia C, et al. New treatments for asthma: from the pathogenic role of prostaglandin D2 to the therapeutic effects of fevipiprant. Pharmacol Res. 2020;155:104490.

    Article  PubMed  CAS  Google Scholar 

  42. Oguma T, Asano K, Ishizaka A. Role of prostaglandin D(2) and its receptors in the pathophysiology of asthma. Allergol Int. 2008;57(4):307–12.

    Article  PubMed  CAS  Google Scholar 

  43. .“Most Recent National Asthma Data.” Centers for Disease Control and Prevention, Centers for Disease Control and Prevention, 2018., https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm

  44. Sterk PJ, Bel EH. Bronchial hyperresponsiveness: the need for a distinction between hypersensitivity and excessive airway narrowing. Eur Respir J. 1989:267–74.

    Google Scholar 

  45. Janssen LJ. Calcium handling in airway smooth muscle: mechanisms and therapeutic implications. Can Respir J. 1998;5(6):491–8. https://doi.org/10.1155/1998/678027.

    Article  PubMed  CAS  Google Scholar 

  46. Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. Relaxation of arterial smooth muscle by calcium sparks. Science. 1995;270(5236):633–7. https://doi.org/10.1126/science.270.5236.633.

    Article  PubMed  CAS  Google Scholar 

  47. Janssen LJ, Sims SM. Acetylcholine activates non-selective cation and chloride conductances in canine and Guinea-pig tracheal myocytes. J Physiol. 1992;453(1):197–218. https://doi.org/10.1113/jphysiol.1992.sp019224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Janssen LJ, Sims SM. Histamine activates Cl- and K+ currents in Guinea-pig tracheal myocytes: convergence with muscarinic signalling pathway. J Physiol. 1993;465:661–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cheng H, Lederer WJ. Calcium sparks. Physiol Rev. 2008;88(4):1491–545. https://doi.org/10.1152/physrev.00030.2007.

    Article  PubMed  CAS  Google Scholar 

  50. Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev. 1999;79(3):763–854.

    Article  PubMed  CAS  Google Scholar 

  51. Arnon A, Hamlyn JM, Blaustein MP. Na+ entry via store-operated channels modulates Ca2+ signaling in arterial myocytes. Am J Physiol Cell Physiol. 2000;278(1):C163–73.

    Article  PubMed  CAS  Google Scholar 

  52. Hirota S, Pertens E, Janssen LJ. The reverse mode of the Na+/Ca2+ exchanger provides a source of Ca2+ for store refilling following agonist-induced Ca2+ mobilization. Am J Physiol Lung Cell Mol Physiol. 2007;292(2) https://doi.org/10.1152/ajplung.00222.2006.

  53. Aguilar HN, Mitchell BF. Physiological pathways and molecular mechanisms regulating uterine contractility. Hum Reprod Update. 2010;16(6):725–44. https://doi.org/10.1093/humupd/dmq016.

    Article  PubMed  CAS  Google Scholar 

  54. Doeing DC, Solway J. Airway smooth muscle in the pathophysiology and treatment of asthma. J Appl Physiol. 2013;114(7):834–43. https://doi.org/10.1152/japplphysiol.00950.2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Johnson RP, Roth A, Tamm M, Hughes M, Ge Q, et al. Airway smooth muscle cell proliferation is increased in asthma. Am J Respir Crit Care Med. 2001;164(3) https://doi.org/10.1164/ajrccm.164.3.2010109.

  56. Verboomen H, Wuytack F, De Smedt H, Himpens B, Casteels R. Functional difference between SERCA2a and SERCA2b Ca2+ pumps and their modulation by phospholamban. Biochem J. 1992;286(Pt 2):591–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mahn K, Hirst SJ, Yin S, Holt MR, Lavender P, Ojo OO, et al. Diminished sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma. Proc Natl Acad Sci. 2009;106(26):10775–80. https://doi.org/10.1073/pnas.0902295106.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ma X, Cheng Z, Kong H, Wang Y, Unruh H, Stephens NL, Laviolette M. Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am J Physiol Lung Cell Mol Physiol. 2002;283(6):L1181–9. https://doi.org/10.1152/ajplung.00389.2001.

    Article  PubMed  CAS  Google Scholar 

  59. Chiba Y, Ueno A, Shinozaki K, Takeyama H, Nakazawa S, Sakai H, Misawa M. Involvement of RhoA-mediated Ca2 sensitization in antigen-induced bronchial smooth muscle hyperresponsiveness in mice. Respir Res. 2005;6(1) https://doi.org/10.1186/1465-9921-6-4.

  60. Koshak EA, Alamoudi OS. Do eosinophil counts correlate differently with asthma severity by symptoms versus peak flow rate? Ann AllergyAsthma Immunol. 1999;83(6):567–71. https://doi.org/10.1016/s1081-1206(10)62871-2.

    Article  CAS  Google Scholar 

  61. Bousquet J, Chanez P, Lacoste JY, Barnéon G, Ghavanian N, Enander I, et al. Eosinophilic inflammation in asthma. N Engl J Med. 1990;323:1033–9. https://doi.org/10.1056/NEJM199010113231505.

    Article  PubMed  CAS  Google Scholar 

  62. Mattes J, Yang M, Mahalingam S, Kuehr J, Webb DC, Simson L, et al. Intrinsic defect in T cell production of interleukin (IL)-13 in the absence of both IL-5 and Eotaxin precludes the development of eosinophilia and airways Hyperreactivity in experimental asthma. J Exp Med. 2002;195(11):1433–44. https://doi.org/10.1084/jem.20020009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zuyderduyn S, Hiemstra PS, Rabe KF. TGF-β differentially regulates TH2 cytokine-induced eotaxin and eotaxin-3 release by human airway smooth muscle cells. J Allergy Clin Immunol. 2004;114(4):791–8. https://doi.org/10.1016/j.jaci.2004.06.037.

    Article  PubMed  CAS  Google Scholar 

  64. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007;448(7152):470–3. https://doi.org/10.1038/nature06014.

    Article  PubMed  CAS  Google Scholar 

  65. Cantero-Recasens G, Fandos C, Rubio-Moscardo F, Valverde MA, Vicente R. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum Mol Genet. 2009;19(1):111–21. https://doi.org/10.1093/hmg/ddp471.

    Article  CAS  Google Scholar 

  66. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454(7203):455–62. https://doi.org/10.1038/nature07203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Rola-Pleszczynski M, Espinosa K, Stankova J. CysLT1 receptor upregulation by TGF-beta and IL-13, but not IL-4, is associated with bronchial smooth muscle cell proliferation in response to LTD4. J Allergy Clin Immunol. 2003;111(2) https://doi.org/10.1016/s0091-6749(03)81084-9.

  68. Tong X, Kono T, Evans-Molina C. Nitric oxide stress and activation of AMP-activated protein kinase impair β-cell sarcoendoplasmic reticulum calcium ATPase 2b activity and protein stability. Cell Death Dis. 2015;6(6):e1790. https://doi.org/10.1038/cddis.2015.154.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol. 2010;2(11):a003996. https://doi.org/10.1101/cshperspect.a003996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Du W, et al. Excitation-contraction coupling in airway smooth muscle. J Biol Chem. 2006;281(40):30143–51. https://doi.org/10.1074/jbc.m606541200.

    Article  PubMed  CAS  Google Scholar 

  71. Ledoux J, et al. Calcium-activated potassium channels and the regulation of vascular tone. Physiology. 2006;21(1):69–78. https://doi.org/10.1152/physiol.00040.2005.

    Article  PubMed  CAS  Google Scholar 

  72. Sathish V, Thompson MA, Bailey JP, Pabelick CM, Prakash YS, Sieck GC. Effect of proinflammatory cytokines on regulation of sarcoplasmic reticulum Ca2+ reuptake in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2009;297(1):L26–34. https://doi.org/10.1152/ajplung.00026.2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Sathish V, Delmotte PF, Thompson MA, Pabelick CM, Sieck GC, Prakash YS. Sodium-calcium exchange in intracellular calcium handling of human airway smooth muscle. PLoS ONE. 2011;6(8):e23662. https://doi.org/10.1371/journal.pone.0023662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Yoo E (2010) Inflammatory cytokines induce human bronchial smooth muscle cell proliferation via an NCX-1 dependent mechanism. UC San Diego. ProQuest ID: Yoo_ucsd_0033M_11067. Merritt ID: ark:/20775/bb4540524j. Retrieved from https://escholarship.org/uc/item/6zv59678.

  75. Du Y, Zhao J, Li X, et al. Dissociation of FK506-binding protein 12.6 kD from ryanodine receptor in bronchial smooth muscle cells in airway Hyperresponsiveness in asthma. Am J Respir Cell Mol Biol. 2014;50(2):398–408. https://doi.org/10.1165/rcmb.2013-0222OC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Deshpande DA, Wang WCH, McIlmoyle EL, et al. Bitter taste receptors on airway smooth muscle bronchodilate by a localized calcium flux and reverse obstruction. Nat Med. 2010;16(11):1299–304. https://doi.org/10.1038/nm.2237.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. ACAAI Public Website. Asthma treatment. [online] 2018. Available at: https://acaai.org/asthma/asthma-treatment. Accessed 24 Apr 2018.

  78. Drugs.com Public Website. Albuterol sulfate. [online] 2018. Available at: https://www.drugs.com/monograph/albuterol-sulfate.html. Accessed 24 Apr 2018.

  79. Rodrigo G, Rodrigo C. The role of anticholinergics in acute asthma treatment. Chest. 2002;121(6):1977–87. https://doi.org/10.1378/chest.121.6.1977.

    Article  PubMed  CAS  Google Scholar 

  80. Barnes PJ. Inhaled corticosteroids. Pharmaceuticals. 2010;3(3):514–40. https://doi.org/10.3390/ph3030514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ducharme FM, Ni Chroinin M, Greenstone I, Lasserson TJ. Addition of long-acting beta2-agonists to inhaled corticosteroids versus same dose inhaled corticosteroids for chronic asthma in adults and children. Cochrane Database Syst Rev. 2010;5:CD005535. https://doi.org/10.1002/14651858.CD005535.pub2.

    Article  Google Scholar 

  82. Barnes NC. Effects of antileukotrienes in the treatment of asthma. Am J Respir Crit Care. 2000;161:S73–6. https://doi.org/10.1164/ajrccm.161.supplement_1.ltta-1.

    Article  CAS  Google Scholar 

  83. Nagumo H, Sasaki Y, Ono Y, Okamoto H, Seto M, Takuwa Y. Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells. Am J Physiol Cell Physiol. 2000;278(1):C57–65. https://doi.org/10.1152/ajpcell.2000.278.1.C57.

    Article  PubMed  CAS  Google Scholar 

  84. Hart TK, Blackburn MN, Brigham-Burke M, et al. Preclinical efficacy and safety of pascolizumab (SB240683): a humanized anti-interleukin-4 antibody with therapeutic potential in asthma. Clin Exp Immunol. 2002;130:93–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Borish LC, Nelson HS, Corren J, et al. Efficacy of soluble IL-4 receptor for the treatment of adults with asthma. J Allergy Clin Immunol. 2001;107:963–70.

    Article  PubMed  CAS  Google Scholar 

  86. Kung TT, Stelts DM, Zurcher JA, et al. Involvement of IL-5 in a murine model of allergic pulmonary inflammation: prophylactic and therapeutic effect of an anti-IL-5 antibody. Am J Respir Cell Mol Biol. 1995;13:360–5.

    Article  PubMed  CAS  Google Scholar 

  87. Blanchard C, Mishra A, Saito-Akei H, Monk P, Anderson I, Rothenberg ME. Inhibition of human interleukin-13-induced respiratory and oesophageal inflammation by anti-human-interleukin-13 antibody (CAT-354). Clin Exp Allergy. 2005;35:1096–103.

    Article  PubMed  CAS  Google Scholar 

  88. Berry MA, Hargadon B, Shelley M, et al. Evidence of a role of tumor necrosis factor α in refractory asthma. N Engl J Med. 2006;354:697–708.

    Article  PubMed  CAS  Google Scholar 

  89. Erin EM, Leaker BR, Nicholson GC, et al. The effects of a monoclonal antibody directed against tumor necrosis factor-α in asthma. Am J Respir Crit Care Med. 2006;174:753–62.

    Article  PubMed  CAS  Google Scholar 

  90. Wang YX, Kotlikoff MI. Inactivation of calcium-activated chloride channels in smooth muscle by calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci USA. 1997;94:14918–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Bao R, Lifshitz LM, Tuft RA, Bellve K, Fogarty KE, ZhuGe R. A close association of ryrs with highly dense clusters of Ca2+−activated cl channels underlies the activation of stics by Ca2+ sparks in mouse airway smooth muscle. J Gen Physiol. 2008;132:145–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Wang YX, Kotlikoff MI. Muscarinic signaling pathway for calcium release and calcium-activated chloride current in smooth muscle. Am J Phys. 1997;273:C509–19.

    Article  CAS  Google Scholar 

  93. Huang F, Zhang H, Wu M, Yang H, Kudo M, Peters CJ, Woodruff PG, Solberg OD, Donne ML, Huang X, Sheppard D, Fahy JV, Wolters PJ, Hogan BL, Finkbeiner WE, Li M, Jan YN, Jan LY, Rock JR. Calcium-activated chloride channel tmem16a modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci USA. 2012;109:16354–9.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhang CH, Li Y, Zhao W, Lifshitz LM, Li H, Harfe BD, Zhu MS, Zhuge R. The transmem-brane protein 16a Ca2+−activated Cl- channel in airway smooth muscle contributes to airway hyperresponsiveness. Am J Respir Crit Care Med. 2013;187:374–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Barnes PJ. Reactive oxygen species and airway inflammation. Free Radic Biol Med. 1990;9(3):235–43.

    Article  PubMed  CAS  Google Scholar 

  96. Chihara J, Kakazu T, Higashimoto I, et al. Increased eosinophil oxidative metabolism by treatment with soluble intercellular adhesion molecule-1. Int Arch Allergy Immunol. 1995;108:45–7.

    Article  PubMed  CAS  Google Scholar 

  97. Liao B, Zheng YM, Yadav VR, Korde AS, Wang YX. Hypoxia induces intracellular Ca2+ release by causing reactive oxygen species-mediated dissociation of FK506-binding protein 12.6 from ryanodine receptor 2 in pulmonary artery myocytes. Antioxid Redox Signal. 2011;14(1):37–47. https://doi.org/10.1089/ars.2009.3047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Mei L, Zheng YM, Wang YX. (2013) Ryanodine and inositol Trisphosphate receptors/Ca2+ release channels in airway smooth muscle cells. In: Calcium signaling in airway smooth muscle cells. pp 1–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Annarita Di Mise or Yong-Xiao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okonski, R., Zheng, YM., Di Mise, A., Wang, YX. (2021). Reciprocal Correlations of Inflammatory and Calcium Signaling in Asthma Pathogenesis. In: Wang, YX. (eds) Lung Inflammation in Health and Disease, Volume I. Advances in Experimental Medicine and Biology, vol 1303. Springer, Cham. https://doi.org/10.1007/978-3-030-63046-1_17

Download citation

Publish with us

Policies and ethics