Skip to main content

Risk Assessment and Mitigation Tools

  • Chapter
  • First Online:
CO2 Injection in the Network of Carbonate Fractures

Part of the book series: Petroleum Engineering ((PEEN))

  • 318 Accesses

Abstract

Developing engineering projects involving geological systems, such as the Carbon Capture and Storage technologies (CCS), is a complex task with significant challenges. Often the subsoil is poorly investigated and projects often face difficult management of risk components related to uncertainties in the geological environment. Understanding and assessing the environmental risks in these projects should provide satisfactory answers to questions regarding whether CO2 can leak and what would happen, specifically regarding the consequences for safety, health and the environment. It is worth noting the importance of giving an adequate answer to these questions, among other reasons, due to its influence on the public acceptance of this technology. There is a clear relationship between the early estimation of environmental risks and the social acceptance of technologies. This allows overcome both mistrust and erroneous concepts that citizens could have in relations to them. As indicated in Guide 1 for the application of the European CCS Directive, the environmentally safe management of CO2 geological storage must be a fundamental objective in any project associated with CCS processes. All this has to be integrated with monitoring strategies for verifying the behavior of the site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bachu, S. (2008). CO2 storage in geological media: Role, means, status and barriers to deployment. Progress in Energy and Combustion Science, 34, 254–273.

    Article  Google Scholar 

  2. European Community. (2012). Implementation of directive 2009/31/EC on the geological storage of carbon dioxide. In Guidance document 1: CO2 storage life cycle risk management framework 2012-06-15. https://op.europa.eu/s/oayY

  3. van Egmond, B. (2006). Developing a method to screen and rank geological CO2 storage sites on the risk of leakage (NWS-E-2006-108). Copernicus Institute, Department of Science, Technology and Society.

    Google Scholar 

  4. Pérez-Estaún, A., Gómez, M., & Carrera, J. (2009). El almacenamiento geológico de CO2, una de las soluciones al efecto invernadero. Enseñanza de las Ciencias de la Tierra, 17(2), 179–189.

    Google Scholar 

  5. ISO. (2009). ISO/IEC guide 73:2009. “Risk management-vocabulary”. International Organization for Standardization.

    Google Scholar 

  6. PMI (Project Management Institute). (2000). A guide to the project management body of knowledge (PMBOKR) (2000 ed.). Newtown Square, PA: Project Management Institute.

    Google Scholar 

  7. IRGC. (2013). Risk governance guidelines for unconventional gas development. Lausanne: International Risk Governance Council. ISBN: 978-2-9700-772-8-2.

    Google Scholar 

  8. Condor, J., Unatrakarn, D., Asghari, K., et al. (2011). A comparative analysis of risk assessment methodologies for the geologic storage of carbon dioxide. Energy Procedia, 4, 4036–4043.

    Article  Google Scholar 

  9. NETL—National Energy Technology Laboratory. (2017a). BEST PRACTICES: Risk management and simulation for geologic storage projects (Report DOE/NETL-2017/1846) (p. 114).

    Google Scholar 

  10. Li, Q, & Liu, G. (2017). Risk assessment of the geological storage of CO2: A review. In V. Vishal & T. N. Singh (Eds.), Geologic carbon sequestration. Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-27019-7_13

  11. SKI. (1996). SKI Site-94: Deep repository performance assessment project (SKI Report SKI 96:36). Swedish Nuclear Power Inspectorate, Stockholm, Sweden.

    Google Scholar 

  12. Stenhouse, M. J. (2001). Application of systems analysis to the long-term storage of CO2 in the Weyburn reservoir (Monitor Scientific Report MSCI-2025-1). Denver, CO: Monitor Scientific LLC.

    Google Scholar 

  13. Garcia-Aristizabal, A., Kocot, J., Russo, R., et al. (2019). A probabilistic tool for multi-hazard risk analysis using a bow-tie approach: Application to environmental risk assessments for geo-resource development projects. Acta Geophysica, 67, 385–410.

    Article  Google Scholar 

  14. Paraguassú, M. M., Câmara, G., Rocha, P. S., et al. (2015). An approach to assess risks of carbon geological storage technology. International Journal of Global Warming 7(1).

    Google Scholar 

  15. Pawar, R. J., Bromhal, G. S., Carey, J. W., et al. (2015). Recent advances in risk assessment and risk management of geologic CO2 storage. International Journal of Greenhouse Gas Control, 40, 292–311.

    Article  Google Scholar 

  16. Liu, W., & Ramirez, A. (2017). State of the art review of the environmental assessment and risks of underground geo-energy resources exploitation. Renewable and Sustainable Energy Reviews, 76, 628–644.

    Article  Google Scholar 

  17. Hurtado, A., Recreo, F., Eguilior, S., et al. (2010). Aplicación de una evaluación preliminar de la seguridad y de los riesgos HSE a las potenciales ubicaciones de una planta piloto de almacenamiento geológico de CO2. In Comunicación Técnica en 10° Congreso Nacional del Medio Ambiente (CONAMA), Madrid, 22 al 26 de noviembre de 2010. ISBN: 978-84-614-6112-7.

    Google Scholar 

  18. Hurtado, A., Eguilior, S., & Recreo, F. (2014). Methodological development of a probabilistic model for CO2 geological storage safety assessment. International Journal of Energy and Environmental Engineering, 5, 2–3.

    Google Scholar 

  19. Hurtado, A., Eguilior, S., & Recreo, F. (2015). Modelo Probabilista de Evaluación Integrada del Comportamiento de la Planta de Desarrollo Tecnológico de Hontomín. Versión 2 Informe Técnico CIEMAT 1346. Depósito Legal: M-26385-2011 ISSN: 1135-9420 NIPO: 721-15-005-6.

    Google Scholar 

  20. Pawar, R., Dilmore, R., Chu, S., et al. (2017). Informing geologic CO2 storage site management decisions under uncertainty: Demonstration of NRAP’s integrated assessment model (NRAP-IAM-CS) application. Energy Procedia, 114, 4330–4337.

    Article  Google Scholar 

  21. Ruiz, C., Recreo, F., Prado, P., Campos, R., Pelayo, M., de la Losa, A., et al. (2007). Almacenamiento Geológico de CO2. Criterios de selección de emplazamientos. Informe Técnico CIEMAT, 1106, 99 pp. ISSN: 1135-9420.

    Google Scholar 

  22. Bouc, O., & Fabriol, H. (2007). Towards a methodology to define safety criteria for CO2 geological storage. In Sixth Annual Conference on Carbon Capture & Sequestration, Pittsburgh, PA, May 7–10, 2007.

    Google Scholar 

  23. Bouc, O., Audigane, P., Bellenfant, G., Fabriol, H., Gastine, M., Rohmer, J., & Seyedi, D. (2009). Determining safety criteria for CO2 geological storage. Energy Procedia, 1, 2439–2446.

    Article  Google Scholar 

  24. Stauffer, P. H., Viswanthan, H. S., Klasky, M. L., et al. (2006). CO2-PENS: A CO2 sequestration system model supporting risk-based decision. In CMWR XVI, Copenhagen.

    Google Scholar 

  25. Oldenburg, C. M. (2008). Screening and ranking framework for geologic CO2 storage site selection on the basis of health, safety and environmental risk. Environmental Geology, 54, 1687–1694.

    Article  Google Scholar 

  26. Toth, F. L. (Ed.). (2011). Geological disposal of carbon dioxide and radioactive waste: A comparative assessment. Advances in Global Change Research, 44. https://doi.org/10.1007/978-90-481-8712-6. International Atomic Energy Agency. ISBN: 978-90-481-8711-9.

  27. Lanting, M., Hurtado, A., Eguilior, S., & Llamas, J. F. (2019). Forecasting concentrations of organic chemicals in the vadose zone caused by spills of hydraulic fracturing wastewater. Science of the Total Environment, 696, 133911.

    Article  Google Scholar 

  28. Le Guenan, T., Gravaud, I., de Dios, C., Loubeau, L., Poletto, F., Eguilior, S., & Hurtado A. (2018). Determining performance indicators for linking monitoring results and risk assessment—Application to the CO2 storage pilot of Hontomìn, Spain. In Conference Paper. 14th Greenhouse Gas Control Technologies Conference (GHGT-14), Melbourne, October 21–26, 2018. Available at SSRN: https://ssrn.com/abstract=3366022

  29. Pearl, J. (1998). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo, CA: Morgan Kaufmann Publishers.

    MATH  Google Scholar 

  30. Xu, T., Apps, J. A., & Pruess, K. (2002). Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep saline arenaceous aquifers. Lawrence Berkeley National Laboratory. También accesible en https://www.escholarship.org/uc/item/7hk8s1nx

  31. Riaz, A., Hesse, M., Tchelepi, A., et al. (2006). Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. Journal of Fluid Mechanics, 548, 87–111.

    Article  MathSciNet  Google Scholar 

  32. Michael, K., Bachu, S., Buschkuehle, B. E., et al. (2006). Comprehensive characterization of a potential site for CO2 geological storage in Central Alberta, Canada. In CO2SC Symposium (pp. 134–138). Berkeley, CA: Lawrence Berkeley Laboratory.

    Google Scholar 

  33. Chang, K., Minkoff, S. E., & Bryant, S. L. (2008). Modeling leakage through faults of CO2 stored in an aquifer (SPE 115929, SPE ATCE). Denver, CO.

    Google Scholar 

  34. IPCC. (2005). In B. Metz, O. Davidson, H. de Coninck, M. Loos, & L. Meyer (Eds.) (431 pp.). Cambridge: Cambridge University Press.

    Google Scholar 

  35. Bowden, A. R., & Rigg, A. (2004). Assessing risk in CO2 storage projects. The APPEA Journal, 44, 677–702.

    Google Scholar 

  36. ANCOLD (Australian National Committee on Large Dams). (2003). ‘Life safety risks’ in the ANCOLD guidelines on risk assessment. ANCOLD.

    Google Scholar 

  37. INSHT. (2008). Límites de exposición profesional para agentes químicos en España; Año 2008. Instituto Nacional de Seguridad e Higiene en el Trabajo (INSHT).

    Google Scholar 

  38. U.S. EPA, 40 CFR Parts 144 and 146. (2008). Federal requirements under the underground injection control program for carbon dioxide geologic sequestration wells. Proposed rule.

    Google Scholar 

  39. Kovscek, A. R. (2002). Screening criteria for CO2 storage in oil reservoirs. Petroleum Science and Technology., 20(7–8), 841–866.

    Article  Google Scholar 

  40. Holtz, M. H. (2002). Residual gas saturation to aquifer influx: A calculation method for 3-D computer reservoir model construction. SPE Paper 75502. Presented at the SPE Gas Technologies Symposium, Calgary, Alberta, April.

    Google Scholar 

  41. Taber, J. J., Martin, F. D., & Seright, R. S. (1997). EOR screening criteria revisited—Part 1: Introduction to screening criteria and enhanced recovery field projects. SPE Reservoir Engineering, 12(3), 189–198.

    Article  Google Scholar 

  42. Gozalpour, F., Ren, S. R., & Tohidi, B. (2005). CO2 EOR and storage in oil reservoirs. Oil & Gas Science and Technology—Revue IFP, 60(3), 537.

    Google Scholar 

  43. NETL—National Energy Technology Laboratory. (2017b). BEST PRACTICES: Monitoring, verification, and accounting (MVA) for geologic storage projects (DOE/NETL-2017/1847) (88 pp.).

    Google Scholar 

  44. Ioannides, K., Papachristodoulou, C., Stamoulis, K., Karamanis, D., Pavlides, S., Chatzipetros, A., & Karakala, E. (2003). Soil gas radon: A tool for exploring active fault zones. Applied Radiation and Isotopes, 59, 205–213.

    Article  Google Scholar 

  45. Walia, V., Lin, S.-J., Fu, C.-C., Yang, T. F., Hong, W.-L., Wen, K.-L., & Chen, C.-H. (2010). Soil-gas monitoring: A tool for fault delineation studies along Hsinhua Fault (Tainan), Southern Taiwan. Applied Geochemistry, 25, 602–607.

    Article  Google Scholar 

  46. Rodrigo-Naharro, J. (2014). El análogo natural de almacenamiento y escape de CO2 de la cuenca de Gañuelas-Mazarrón: implicaciones para el comportamiento y la seguridad de un almacenamiento de CO2 en estado supercrítico (PhD thesis). Universidad Politécnica de Madrid, 427 pp. Published thesis. ISBN: 978-84-7834-738-4.

    Google Scholar 

  47. Rodrigo-Naharro, J., Nisi, B., Vaselli, O., et al. (2012). Measurements and relationships between CO2 and 222Rn in a natural analogue for CO2 storage and leakage: The Mazarrón Tertiary Basin (Murcia, Spain). Geo-Temas, 13, 1978–1981.

    Google Scholar 

  48. Rodrigo-Naharro, J., Nisi, B., Vaselli, O., et al. (2013). Diffuse soil CO2 flux to assess the reliability of CO2 storage in the Mazarrón-Gañuelas Tertiary Basin (Spain). Fuel, 114, 162–171.

    Article  Google Scholar 

  49. Rodrigo-Naharro, J., Quindós, L. S., Clemente-Jul, C., et al. (2017). CO2 degassing from a Spanish natural analogue for CO2 storage and leakage: Implications on 222Rn mobility. Applied Geochemistry, 84, 297–305.

    Article  Google Scholar 

  50. Carter, R., Kaufman, W. J., Orlob, G. T., & Todd, D. K. (1959). Helium as a ground water tracer. Journal of Geophysical Research, 64, 689–709.

    Article  Google Scholar 

  51. Tonani, F. (1971). Concepts and techniques for the geochemical forecasting of volcanic eruption. In The surveillance and prediction of volcanic activity (pp. 145–166). Paris: UNESCO.

    Google Scholar 

  52. Sugisaki, R., & Taki, K. (1987). Simplified analyses of He, Ne and Ar dissolved in natural waters. Geochemical Journal, 21, 23–27.

    Article  Google Scholar 

  53. Capasso, G., & Inguaggiato, S. (1998). A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Applied Geochemistry, 13, 631–642.

    Article  Google Scholar 

  54. Tassi, F., Vaselli, O., Luchetti, G., et al. (2008). Metodo per la determinazione dei gas disciolti in acque naturali (Internal Report CNR-IGG, no. 2/2008). Florence.

    Google Scholar 

  55. Jacinthe, P. A., & Groffman, P. M. (2001). Silicone rubber sampler to measure dissolved gases in saturated soils and waters. Soil Biology & Biochemistry, 33, 907–912.

    Article  Google Scholar 

  56. De Gregorio, S., Gurrieri, S., & Valenza, M. (2005). A PTFE membrane for the in situ extraction of dissolved gases in natural waters: Theory and applications. Geochemistry, Geophysics, Geosystems, 6, 1–13.

    Article  Google Scholar 

  57. Baubron, J. C., Allard, P., & Toutain, J. P. (1990). Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature, 344, 51–53.

    Article  Google Scholar 

  58. Baubron, J. C., Allard, P., & Toutain, J. P. (1991). Gas hazard on Vulcano Island. Nature, 350, 26–27.

    Article  Google Scholar 

  59. Chan, A. S. K., Prueger, J. H., & Parkin, T. B. (1998). Comparison of closed-chamber and bowen-ratio methods for determining methane flux from peatland surface. Journal of Environmental Quality, 27, 232–239.

    Article  Google Scholar 

  60. Hutchinson, G. L., & Moiser, A. R. (1981). Improved soil cover method for field measurement of nitrous fluxes. Soil Science Society of America Journal, 45, 311–316.

    Article  Google Scholar 

  61. Kanemasu, E. T., Power, W. L., & Sij, J. W. (1974). Field chamber measurements of CO2 flux from soil surface. Soil Science, 118, 233–237.

    Article  Google Scholar 

  62. Mitra, S., Jain, M. C., Kumar, S., et al. (1999). Effect of rice cultivation on methane emission. Agriculture, Ecosystems & Environment, 73, 177–183.

    Article  Google Scholar 

  63. Parkinson, K. (1981). An improved method for measuring soil respiration in the field. Journal of Applied Ecology, 18, 221–228.

    Article  Google Scholar 

  64. Bergfeld, D., Goff, F., & Janik, C. J. (2001). Elevated carbon dioxide flux at the Dixie valley geothermal field, Nevada; relations between surface phenomena and the geothermal reservoir. Chemical Geology, 177, 43–66.

    Article  Google Scholar 

  65. Brombach, T., Hunziker, J. C., Chiodini, G., et al. (2001). Soil diffuse degassing and thermal energy fluxes from the southern Lakki plain, Nisyros (Greece). Geophysical Research Letters, 28, 69–72.

    Article  Google Scholar 

  66. Chiodini, G., Cioni, R., Guidi, M., et al. (1998). Soil CO2 flux measurements in volcanic and geothermal areas. Applied Geochemistry, 13, 543–552.

    Article  Google Scholar 

  67. Chiodini, G., Frondini, F., Kerrick, D. M., et al. (1999). Quantification of deep CO2 fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chemical Geology, 159, 205–222.

    Article  Google Scholar 

  68. Chiodini, G., Frondini, F., Cardellini, C., et al. (2001). CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. Journal of Geophysical Research: Solid Earth, 106, 16213–16221.

    Article  Google Scholar 

  69. Gerlach, T. M., Doukas, M. P., McGee, K. A., et al. (1998). Three-year decline of magmatic CO2 emissions from soils of a mammoth mountain tree kill: Horseshoe Lake, CA, 1995–1997. Geophysical Research Letters, 25, 1947–1950.

    Article  Google Scholar 

  70. Gerlach, T. M., Doukas, M. P., McGee, K. A., et al. (2001). Soil efflux and total emission rates of magmatic CO2 at the Horseshoe lake tree kill, Mammoth mountain, CA, 1995–1999. Chemical Geology, 177, 101–116.

    Article  Google Scholar 

  71. Cardellini, C., Chiodini, G., Frondini, F., et al. (2003). Accumulation chamber measurements of methane fluxes: Application to volcanic-geothermal areas and landfills. Applied Geochemistry, 18, 45–54.

    Article  Google Scholar 

  72. Tassi, F., Montegrossi, G., Vaselli, O., et al. (2009). Flux measurements of benzene and toluene from landfill cover soils. Waste Management and Research, 29, 50–58.

    Article  Google Scholar 

  73. Mazot, A., & Taran, Y. (2009). CO2 flux from the volcanic lake of El Chichón (Mexico). Geofísica Internacional, 48, 73–83.

    Article  Google Scholar 

  74. Sinclair, A. J. (1974). Selection of threshold values in geochemical data using probability graphs. Journal of Geochemical Exploration, 3, 129–149. https://doi.org/10.1016/0375-6742(74)90030-2

    Article  Google Scholar 

  75. Sichel, H. S. (1966). The estimation of means and associated confidence limits for smalls samples from lognormal populations. In Symposium on Mathematical Statistics and Computer Applications in Ore Valuation (pp. 106–122). South African Institute of Mining and Metallurgy.

    Google Scholar 

  76. Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical software library and users guide (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  77. Metcalf, A. E. (2014). Trazabilidad isotópica del carbono: Implicaciones en el almacenamiento geológico de CO2 (PhD thesis). Universidad Internacional Menéndez Pelayo, 233 pp.

    Google Scholar 

  78. Vogel, J. C., Grootes, P. M., & Mook, W. G. (1970). Isotopic fractionation between gaseous and dissolved carbon dioxide. Zeitschrift für Physik, 230, 225–238.

    Article  Google Scholar 

  79. Deines, P. (1980). The isotopic composition of reduced carbon. In A. Fritz & P. Fontes (Eds.), The terrestrial environment. Handbook of environmental isotope geochemistry (pp. 329–434). Elsevier Scientific Press.

    Google Scholar 

  80. O’Leary, M. H. (1988). Carbon isotopes in photosynthesis. BioScience, 38, 328–336.

    Article  Google Scholar 

  81. Friedli, H., Lotscher, H., Oeschger, H., et al. (1986). Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature, 324, 237–238.

    Article  Google Scholar 

  82. Javoy, M., Pineau, F., & Delorme, H. (1986). Carbon and nitrogen isotopes in the mantle. Chemical Geology, 57, 41–62.

    Article  Google Scholar 

  83. Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology (p. 328). New York: CRC Press.

    Google Scholar 

  84. Cerling, T. E. (1984). The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71, 229–240.

    Article  Google Scholar 

  85. Cerling, T. E. (1991). Carbon dioxide in the atmosphere: Evidence from Cenozoic and Mesozoic paleosols. American Journal of Science, 291, 377–400.

    Article  Google Scholar 

  86. Romanek, C. S., Grossman, E. L., & Morse, J. W. (1992). Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta, 56, 419–430.

    Article  Google Scholar 

  87. Reyes, E., Pérez del Villar, L., Delgado, A., et al. (1998). Carbonatation processes at the El Berrocal analogue granitic system (Spain): Mineralogical and isotopic study. Chemical Geology, 150, 293–315.

    Article  Google Scholar 

  88. Jenkins, A. C., & Cook, A. (1961). Argon, helium and the rare gases: History, occurrence and properties. London: Interscience Publishers.

    Google Scholar 

  89. Clarke, W. B., Beg, M. A., & Craig, H. (1969). Excess 3He in the sea: Evidence for terrestrial primordial helium. Earth and Planetary Science Letters, 6, 213–220.

    Article  Google Scholar 

  90. Sano, Y., & Wakita, H. (1985). Geographical distribution of 3He/4He ratios in Japan: Implication for arc tectonics and incipient magmatism. Journal of Geophysical Research, 90, 8719–8741.

    Article  Google Scholar 

  91. Oxburgh, E. R., O’Nions, R. K., & Hill, R. I. (1986). Helium isotopes in sedimentary basins. Nature, 324, 632–635.

    Article  Google Scholar 

  92. Hiyagon, H., & Kennedy, B. M. (1992). Noble gases in CH4-rich gas fields, Alberta, Canada. Geochimica et Cosmochimica Acta, 56, 1569–1589.

    Article  Google Scholar 

  93. Craig, H., & Lupton, J. E. (1976). Primordial neon, helium, and hydrogen in oceanic basalts. Earth and Planetary Science Letters, 31, 369–385.

    Article  Google Scholar 

  94. Kurz, M. D., & Jenkins, W. J. (1981). The distribution of helium in oceanic basalt glasses. Earth and Planetary Science Letters, 53, 41–54.

    Article  Google Scholar 

  95. Lupton, J. E. (1983). Terrestrial inert gases: Isotope tracer studies and clues to primordial components in the mantle. Annual Review of Earth and Planetary Sciences, 11, 371–414.

    Article  Google Scholar 

  96. Ozima, M., & Zashu, S. (1983). Noble gases in submarine pillow volcanic glasses. Earth and Planetary Science Letters, 62, 24–40.

    Article  Google Scholar 

  97. Kaneoka, I., & Takaoka, N. (1980). Rare gas isotopes in Hawaiian ultramafic nodules and volcanic rocks: Constraints on genetic relationships. Science, 208, 1366–1368.

    Article  Google Scholar 

  98. Marty, B., Meynier, V., Nicolini, E., et al. (1993). Geochemistry of gas emanations: A case study of the Réunion Hot Spot, Indian Ocean. Applied Geochemistry, 8, 141–152.

    Article  Google Scholar 

  99. Ozima, M., & Podosek, F. A. (2002). Noble gas geochemistry (2nd ed., 286 pp.). Cambridge University Press.

    Google Scholar 

  100. Sano, Y., Takahata, N., Nishio, Y., et al. (1998). Nitrogen recycling in subduction zones. Geophysical Research Letters, 25, 2289–2292.

    Article  Google Scholar 

  101. Fischer, T. P., Hilton, D. R., Zimmer, M. M., et al. (2002). Subduction and recycling of nitrogen along the Central American margin. Science, 297, 1154–1157.

    Article  Google Scholar 

  102. Werner, R. A., & Brand, W. A. (2001). Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry, 15, 501–519.

    Article  Google Scholar 

  103. Neele, F., Grimstad, A.-A., Fleury, M., et al. (2014). MiReCOL: Developing corrective measures for CO2 storage. Energy Procedia, 63, 4658–4665.

    Article  Google Scholar 

  104. Johnson, J. W., Nitao, J. J., Morris, J. P., et al. (2003). Reactive transport modeling of geohazards associated with CO2 injection for EOR and geologic sequestration. In Offshore Technology Conference, OTC 15119.

    Google Scholar 

  105. Lavrov, A. (2016). Dynamics of stresses and fractures in reservoir and cap rock under production and injection. Energy Procedia, 86, 381–390.

    Article  Google Scholar 

  106. Antropov, A., Lavrov, A., & Orlic, B. (2017). Effect of in-situ stress alterations on flow through faults and fractures in the cap rock. Energy Procedia, 114, 3193–3201.

    Article  Google Scholar 

  107. Maldonado, R. (2017). Riesgos geomecánicos asociados a la inyección de CO2 en formaciones geológicas (PhD thesis). Universidad de Oviedo.

    Google Scholar 

  108. Durucan, S., Korre, A., Shi, J.-Q., et al. (2016). The use of polymer-gel solutions for CO2 flow diversion and mobility control within storage sites. Energy Procedia, 86, 450–459.

    Article  Google Scholar 

  109. Wasch, L. J., Wollenweber, J., Neele, F., et al. (2017). Mitigating CO2 leakage by immobilizing CO2 into solid reaction products. Energy Procedia, 114, 4214–4226.

    Article  Google Scholar 

  110. Govindan, R., Si, G., Korre, A., et al. (2017). The assessment of CO2 backproduction as a technique for potential leakage remediation at the Ketzin pilot site in Germany. Energy Procedia, 114, 4154–4163.

    Article  Google Scholar 

  111. Bossie-Codreanu, D. (2017). Study of N2 as a mean to improve CO2 storage safety. Energy Procedia, 114, 5479–5499.

    Article  Google Scholar 

  112. MiReCOL. (2017). Final report summary—MiReCOL (Mitigation and Remediation of CO2 leakage). https://cordis.europa.eu/project/id/608608/reporting. Accessed November 12, 2020.

  113. Orlic, B., Loeve, D., & Peters, E. (2016). Remediation of leakage by diversion of CO2 to nearby reservoir compartments. MiReCOL Publications. https://www.mirecol-co2.eu/publications.html Accessed June 24, 2020.

  114. Mosleh, M. H., Govindan, R., Shi, J.-Q., et al. (2017). The use of polymer-gel remediation for CO2 leakage through faults and fractures in the caprock. Energy Procedia, 114, 4164–4171.

    Article  Google Scholar 

  115. Réveillère, A., & Rohmer, J. (2011). Managing the risk of CO2 leakage from deep saline aquifer reservoirs through the creation of a hydraulic barrier. Energy Procedia, 4, 3187–3194.

    Article  Google Scholar 

  116. Benson, S. M. (2006). Monitoring carbon dioxide sequestration in deep geological formations for inventory verification and carbon credits (SPE 102833). Society of Petroleum Engineers.

    Google Scholar 

  117. Celia, M. A., Bachu, S., Nordbotten, J. M., et al. (2004). Quantitative estimation of CO2 leakage from geological storage: Analytical models, numerical models and data needs. In Greenhouse gas control technologies (pp. 663–671). Oxford: Elsevier Science Ltd.

    Google Scholar 

  118. Fleury, M., Sissmann, O., Brosse, E., et al. (2017). A silicate based process for plugging the near well bore formation. Energy Procedia, 114, 4172–4187.

    Article  Google Scholar 

  119. Manceau, J.-C., Hatzignatiou, D. G., de Latour, L., et al. (2014). Mitigation and remediation technologies and practices in case of undesired migration of CO2 from a geological storage unit—Current status. International Journal of Greenhouse Gas Control, 22, 272–290.

    Article  Google Scholar 

  120. Mosleh, M. H., Durucan, S., Syed, A., et al. (2017). Development and characterisation of a smart cement for CO2 leakage remediation at wellbores. Energy Procedia, 114, 4154–4163.

    Article  Google Scholar 

  121. Todorovic, J., Raphaug, M., Lindeberg, E., et al. (2016). Remediation of leakage through annular cement using a polymer resin: A laboratory study. Energy Procedia, 86, 442–449.

    Article  Google Scholar 

  122. Pearl, J. (2000). Causality. Models, reasoning and inference. Nueva York: Cambridge University Press.

    Google Scholar 

  123. Gigerenzer, G. (1996). On narrow norms and vague heuristic: A reply to Kahneman and Tversky. Psychological Review, 103, 592–596.

    Article  Google Scholar 

  124. Seldmeier, P., & Gigerenzer, G. (2001). Teaching bayesian reasoning in less than two hours. Journal of Experimental Psychology General, 130, 380–400.

    Article  Google Scholar 

Download references

Acknowledgements

The studies showed in this chapter has been funded by Fundación Ciudad de la Energía (Spanish Government) (https://www.ciuden.es), by the European Union through the Compostilla OXYCFB300 project and in the framework of the Project entitled: “Tecnologías avanzadas de generación, captura y almacenamiento de CO2 (PSE-CO2)”, supported by the former Spanish Ministry of Science and Innovation and the EU FEDER funds under award number PSE-120000-2008-6.

This document reflects only the authors’ view and that European Commission or Spanish Government are not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Eguilior .

Editor information

Editors and Affiliations

Glossary

BN

Bayesian Networks

CCS

Carbon Capture and Storage

CGS

CO2 geological storage

DIC

Dissolved inorganic carbon

EJ

Expert Judgment

FEP

Features, Events and Processes

FMEA

Failure Mode and Effect Analysis

HSE

Health, Safety and the Environment

IFT

Interfacial tension

IR

Infra-Red

KPI

Key Performance Indicators

LSC

Liquid scintillation counting

MCA

Multi-Criteria Assessment

MORB

Mid-Ocean Ridge Basalt

OIB

Ocean Island Basalt

RM

Risk management

SRF

Screening and Ranking Framework

SWIFT

Structured “What-If” Techniques

THMQ

Thermo-hydro-mechanical-chemical

VEF

Vulnerability Evaluation Framework

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hurtado, A., Eguilior, S., Rodrigo-Naharro, J., Ma, L., Recreo, F. (2021). Risk Assessment and Mitigation Tools. In: de Dios, J.C., Mishra, S., Poletto, F., Ramos, A. (eds) CO2 Injection in the Network of Carbonate Fractures. Petroleum Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-62986-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62986-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62985-4

  • Online ISBN: 978-3-030-62986-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics