Skip to main content

Modeling Aspects of CO2 Injection in a Network of Fractures

  • Chapter
  • First Online:
CO2 Injection in the Network of Carbonate Fractures

Part of the book series: Petroleum Engineering ((PEEN))

  • 328 Accesses

Abstract

This chapter provides an overview of analytical and numerical modeling approaches for evaluating the effects of CO2 injection into a network of fractures. The system of interest consists of two components—a number of potentially connected high-permeability but low porosity fractures embedded in a low-permeability but higher porosity matrix. The concept of injectivity index, based on analytical solutions to single-phase flow equations in an equivalent continuum, is first explained followed by field applications. The relationship between injectivity index and permeability is also explored based on field data and numerical simulations. Next, a hierarchy of numerical modeling approaches is described ranging from equivalent single continuum, dual porosity (flow only in idealized fractures), dual permeability (flow in fractures and matrix), and discrete fracture networks (flow in a complex fracture network and connected matrix). A case study of CO2 injection into a depleted oil field in the Appalachian Basin, USA, is presented that involves the first three approaches referenced above, followed by a case study of modeling of CO2 injection into a saline aquifer in Hontomin, Spain, using the discrete fracture network approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agada, S., Geiger, S., & Doster, F. (2016). Wettability, hysteresis and fracture–matrix interaction during CO2 EOR and storage in fractured carbonate reservoirs. International Journal of Greenhouse Gas Control, 46, 57–75.

    Article  Google Scholar 

  2. Agada, S., & Geiger, S. (2014). Wettability, trapping and fracture-matrix interaction during WAG injection in fractured carbonate reservoirs. In SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers.

    Google Scholar 

  3. Asghari, K., Dong, M., Shire, J., Coleridge, T. J., Nagrampa, J., & Grassick, J. (2007). Development of a correlation between performance of CO2 flooding and the past performance of waterflooding in Weyburn oil field. SPE Production & Operations, 22(02), 260–264.

    Article  Google Scholar 

  4. Bachu, S., Gunter, W., & Perkins, E. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279.

    Article  Google Scholar 

  5. Bachu, S. (2004). Evaluation of CO2 sequestration capacity in oil and gas reservoirs in the Western Canada Sedimentary Basin. In Alberta Geological Survey, Alberta Energy and Utilities Board March (pp. 1–77).

    Google Scholar 

  6. Bao, J., Hou, Z., Fang, Y., Ren, H., & Lin, G. (2015). Uncertainty quantification for evaluating the impacts of fracture zone on pressure build-up and ground surface uplift during geological CO2 sequestration. Greenhouse Gases: Science and Technology, 5(3), 254–267.

    Article  Google Scholar 

  7. Battelle. (2017). CO2 utilization for enhanced oil recovery and geological storage in Ohio (Reservoir characterization topical report). Battelle.

    Google Scholar 

  8. Beicip-Franlab. (2016). FracaFlow user’s guide. Rueil Malmaison, France.

    Google Scholar 

  9. Berre, I., Doster, F., & Keilegavlen, E. (2019). Flow in fractured porous media: A review of conceptual models and discretization approaches. Transport in Porous Media, 130(1), 215–236.

    Article  MathSciNet  Google Scholar 

  10. Botros, F. E., Hassan, A. E., Reeves, D. M., & Pohll, G. (2008). On mapping fracture networks onto continuum. Water Resources Research 44(8).

    Google Scholar 

  11. CMG. (2012). Advance compositional and GHG reservoir simulator user’s guide. Calgary, Alberta.

    Google Scholar 

  12. Casciano, C., Ruvo, L., Volpi, B., & Masserano, F. (2004). Well test simulation through Discrete Fracture Network modelling in a fractured carbonate reservoir. Petroleum Geoscience, 10(4), 331–342.

    Article  Google Scholar 

  13. Choi, M., Seo, J., Park, H., & Sung, W. (2013). Analysis of oil flow in fractured oil reservoir using carbon dioxide (CO2) foam injection. Journal of Petroleum and Gas Engineering, 4(6), 143–144.

    Google Scholar 

  14. Crawshaw, J. P., & Boek, E. S. (2013). Multi-scale imaging and simulation of structure, flow and reactive transport for CO2 storage and EOR in carbonate reservoirs. Reviews in Mineralogy and Geochemistry, 77(1), 431–458.

    Article  Google Scholar 

  15. Daniau, F., Aug, C., Lemaux, T., Lalou, R., & Lemaire, O. (2008). An innovative and multi-disciplinary methodology for modelling naturally fractured reservoirs. In Proceedings of the 70th EAGE Conference and Exhibition Incorporating SPE EUROPEC, Rome, Italy.

    Google Scholar 

  16. De Dios, J. C., Le Gallo, Y., & Marín, J. A. (2019). Innovative CO2 injection strategies in carbonates and advanced modeling for numerical investigation. Fluids, 4(1), 52.

    Google Scholar 

  17. De Dios, J. C., Delgado, M. A., Marín, J. A., Salvador, I., Álvarez, I., Martinez, C., & Ramos, A. (2017). Hydraulic characterization of fractured carbonates for CO2 geological storage: Experiences and lessons learned in Hontomín Technology Development Plant. International Journal of Greenhouse Gas Control, 58, 185–200.

    Article  Google Scholar 

  18. Ellis, B., Peters, C., Fitts, J., Bromhal, G., McIntyre, D., Warzinski, R., et al. (2011). Deterioration of a fractured carbonate caprock exposed to CO2-acidified brine flow. Greenhouse Gases: Science and Technology, 1(3), 248–260.

    Article  Google Scholar 

  19. Ettehadtavakkol, A., Lake, L. W., & Bryant, S. L. (2014). CO2-EOR and storage design optimization. International Journal of Greenhouse Gas Control, 25, 79–92.

    Article  Google Scholar 

  20. Gale, J. (2004). Geological storage of CO2: What do we know, where are the gaps and what more needs to be done? Energy, 29(9–10), 1329–1338.

    Article  Google Scholar 

  21. Le Gallo, Y., & De Dios, J. C. (2018). Geological model of a storage complex for a CO2 storage operation in a naturally fractured carbonate formation. Geosciences, 8(9), 354–367.

    Article  Google Scholar 

  22. Gilman, J. R., & Kazemi, H. (1988). Improved calculations for viscous and gravity displacement in matrix blocks in dual-porosity simulators (includes associated papers 17851, 17921, 18017, 18018, 18939, 19038, 19361 and 20174). Journal of Petroleum Technology, 40(01), 60–70.

    Article  Google Scholar 

  23. Hardebol, N. J., Maier, C., Nick, H., Geiger, S., Bertotti, G., & Boro, H. (2015). Multiscale fracture network characterization and impact on flow: A case study on the Latemar carbonate platform. Journal of Geophysical Research: Solid Earth, 120(12), 8197–8222.

    Google Scholar 

  24. Hosseininoosheri, P., Hosseini, S., Nuñez-López, V., & Lake, L. (2018). Impact of field development strategies on CO2 trapping mechanisms in a CO2–EOR field: A case study in the permian basin (SACROC unit). International Journal of Greenhouse Gas Control, 72, 92–104.

    Article  Google Scholar 

  25. Hutcheon, I., Shevalier, M., Durocher, K., Bloch, J., Johnson, G., Nightingale, M., et al. (2016). Interactions of CO2 with formation waters, oil and minerals and CO2 storage at the Weyburn IEA EOR site, Saskatchewan, Canada. International Journal of Greenhouse Gas Control, 53, 354–370.

    Article  Google Scholar 

  26. De Joussineau, G., Barrett, K. R., Alessandroni, M., Le Maux, T., & Leckie, D. (2016). Organization, flow impact and modeling of natural fracture networks in a karstified carbonate bitumen reservoir: An example in the Grosmont Formation of the Athabasca Saleski leases, Alberta, Canada. Bulletin of Canadian Petroleum Geology, 64, 291–308.

    Article  Google Scholar 

  27. Kazemi, H. (1969). Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution. Society of Petroleum Engineers Journal, 9(04), 451–462.

    Article  Google Scholar 

  28. Kazemi, H., Merrill, L., Jr., Porterfield, K., & Zeman, P. (1976). Numerical simulation of water-oil flow in naturally fractured reservoirs. Society of Petroleum Engineers Journal, 16(06), 317–326.

    Article  Google Scholar 

  29. Lange, A., & Bruyelle, J. (2011). A multimode inversion methodology for the characterization of fractured reservoirs from well test data. In SPE EUROPEC/EAGE Annual Conference and Exhibition. SPE-143518, Vienna, Austria.

    Google Scholar 

  30. Laochamroonvorapongse, R., Kabir, C., & Lake, L. W. (2014). Performance assessment of miscible and immiscible water-alternating gas floods with simple tools. Journal of Petroleum Science and Engineering, 122, 18–30.

    Article  Google Scholar 

  31. Lee, L. (1982). Well testing. In SPE Monograph Series. Texas: SPE.

    Google Scholar 

  32. Li, L., & Voskov, D. (2018). Multi-level discrete fracture model for carbonate reservoirs. In ECMOR XVI-16th European Conference on the Mathematics of Oil Recovery (pp. 1–17). European Association of Geoscientists & Engineers.

    Google Scholar 

  33. Liu, R., Li, B., Jiang, Y., & Huang, N. (2016). Mathematical expressions for estimating equivalent permeability of rock fracture networks. Hydrogeology Journal, 24(7), 1623–1649.

    Article  Google Scholar 

  34. March, R., Doster, F., & Geiger, S. (2018). Assessment of CO2 storage potential in naturally fractured reservoirs with dual-porosity models. Water Resources Research, 54(3), 1650–1668.

    Article  Google Scholar 

  35. Mishra, S., Kelley, M., Slee, N., Gupta, N., Bhattacharya, I., & Hammond, M. (2013). Maximizing the value of pressure monitoring data from CO2 sequestration projects. Energy Procedia, 37, 4155–4165.

    Article  Google Scholar 

  36. Mishra, S., Ravi Ganesh, P., Kelley, M., & Gupta, N. (2017). Analyzing the performance of closed reservoirs following CO2 injection in CCUS projects. Energy Procedia, 114, 3465–3475.

    Article  Google Scholar 

  37. Mishra, S., Ravi Ganesh, P., Pasumarti, A., Gupta, N., & Pardini, R. (2018). Practical reservoir engineering metrics for analyzing the performance of CCUS projects. In Proceedings of 14th International Conference on Greenhouse Gas Control Technologies, GHGT-14, October 21st–25th 2018, Melbourne, Australia.

    Google Scholar 

  38. Moinfar, A. (2013). Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs.

    Google Scholar 

  39. Nakashima, T., Arihara, N., & Sato, K. (2001). Effective permeability estimation for modeling naturally fractured reservoirs. In SPE Middle East Oil Show. Society of Petroleum Engineers.

    Google Scholar 

  40. Ngo, T. D., Fourno, A., & Noetinger, B. (2017). Modeling of transport processes through large-scale discrete fracture networks using conforming meshes and open-source software. Journal of Hydrology, 554, 66–79.

    Article  Google Scholar 

  41. Ouenes, A., Anderson, T. C., Klepacki, D., Bachir, A., Boukhelf, D., Robinson, G. C., et al. (2010). Integrated characterization and simulation of the fractured Tensleep reservoir at Teapot Dome for CO2 injection design. In SPE Western Regional Meeting. Society of Petroleum Engineers.

    Google Scholar 

  42. Palacio, J. C., & Blasingame, T. A. (1993). Decline curve analysis using type curves—Analysis of gas well production data. SPE paper 25909 presented at the 1993 Joint Rocky Mountain Regional/Low Permeability Reservoirs Symposium, Denver, CO, USA, April 26–28, 1993.

    Google Scholar 

  43. Panfili, P., & Cominelli, A. (2014). Simulation of miscible gas injection in a fractured carbonate reservoir using an embedded discrete fracture model. In Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers.

    Google Scholar 

  44. Patil, V. V., McPherson, B. J., Priewisch, A., Moore, J., & Moodie, N. (2017). Factors affecting self-sealing of geological faults due to CO2-leakage. Greenhouse Gases: Science and Technology, 7(2), 273–294.

    Article  Google Scholar 

  45. Peck, W. D., Azzolina, N. A., Ge, J., Bosshart, N. W., Burton-Kelly, M. E., Gorecki, C. D., et al. (2018). Quantifying CO2 storage efficiency factors in hydrocarbon reservoirs: A detailed look at CO2 enhanced oil recovery. International Journal of Greenhouse Gas Control, 69, 41–51.

    Article  Google Scholar 

  46. Peng, D.-Y., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64.

    Article  Google Scholar 

  47. Ray, D. S., Al-Shammeli, A., Verma, N. K., Matar, S., De Groen, V., De Joussineau, G., et al. (2012). Characterizing and modeling natural fracture networks in a tight carbonate reservoir in the Middle East: A methodology. Bulletin of the Geological Society of Malaysia, 58, 29–35.

    Article  Google Scholar 

  48. Raziperchikolaee, S., Alvarado, V., & Yin, S. (2014). Microscale modeling of fluid flow-geomechanics-seismicity: Relationship between permeability and seismic source response in deformed rock joints. Journal of Geophysical Research: Solid Earth, 119(9), 6958–6975.

    Google Scholar 

  49. Raziperchikolaee, S., & Mishra, S. (2019). Numerical simulation of CO2 huff and puff feasibility for light oil reservoirs in the Appalachian Basin: Sensitivity study and history match of a CO2 pilot test. Energy & Fuels, 33(11), 10795–10811.

    Article  Google Scholar 

  50. Raziperchikolaee, S., Babarinde, O., Sminchak, J., & Gupta, N. (2019a). Natural fractures within Knox reservoirs in the Appalachian Basin: Characterization and impact on poroelastic response of injection. Greenhouse Gases: Science and Technology, 9(6), 1247–1265.

    Google Scholar 

  51. Raziperchikolaee, S., Kelley, M., & Gupta, N. (2019b). A screening framework study to evaluate CO2 storage performance in single and stacked caprock–reservoir systems of the Northern Appalachian Basin. Greenhouse Gases: Science and Technology, 9(3), 582–605.

    Google Scholar 

  52. Ren, B., & Duncan, I. (2019). Modeling oil saturation evolution in residual oil zones: Implications for CO2 EOR and sequestration. Journal of Petroleum Science and Engineering, 177, 528–539.

    Article  Google Scholar 

  53. Rinaldi, A. P., & Rutqvist, J. (2013). Modeling of deep fracture zone opening and transient ground surface uplift at KB-502 CO2 injection well, In Salah, Algeria. International Journal of Greenhouse Gas Control, 12, 155–167.

    Article  Google Scholar 

  54. Rinaldi, A. P., Rutqvist, J., Finsterle, S., & Liu, H.-H. (2017). Inverse modeling of ground surface uplift and pressure with iTOUGH-PEST and TOUGH-FLAC: The case of CO2 injection at In Salah, Algeria. Computers & Geosciences, 108, 98–109.

    Article  Google Scholar 

  55. Rinaldi, A. P., Rutqvist, J., Finsterle, S., & Liu H. (2014). Forward and inverse modeling of ground surface uplift at In Salah, Algeria. In 48th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.

    Google Scholar 

  56. Terry, R. E., & Rogers, J. B. (2014). Applied petroleum reservoir engineering (3rd ed.). Prentice Hall.

    Google Scholar 

  57. Verscheure, M., Fourno, A., & Chilès, J. P. (2012). Joint inversion of fracture model properties for CO2 storage monitoring or oil recovery history matching. Oil & Gas Science and Technology-Revue D’IFP Energies Nouvelles, 67, 221–235.

    Article  Google Scholar 

  58. Vilarrasa, V., Rinaldi, A. P., & Rutqvist, J. (2017). Long-term thermal effects on injectivity evolution during CO2 storage. International Journal of Greenhouse Gas Control, 64, 314–322.

    Article  Google Scholar 

  59. Warren, J., & Root, P. J. (1963). The behavior of naturally fractured reservoirs. Society of Petroleum Engineers Journal, 3(03), 245–255.

    Article  Google Scholar 

  60. Wu, Y.-S. (2015). Multiphase fluid flow in porous and fractured reservoirs. Gulf Professional Publishing.

    Google Scholar 

  61. Zhang, N., Yin, M., Wei, M., & Bai, B. (2019). Identification of CO2 sequestration opportunities: CO2 miscible flooding guidelines. Fuel, 241, 459–467.

    Article  Google Scholar 

Download references

Acknowledgements

The research described in this chapter was funded in parts by the United States Department of Energy National Energy Technology Laboratory (NETL) under award #DE-FC26-0NT42589, the Ohio Development Services Agency’s Coal Development Office Grant D-15-08, and American Electric Power.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanta Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, S., Raziperchikolaee, S., Le Gallo, Y. (2021). Modeling Aspects of CO2 Injection in a Network of Fractures. In: de Dios, J.C., Mishra, S., Poletto, F., Ramos, A. (eds) CO2 Injection in the Network of Carbonate Fractures. Petroleum Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-62986-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62986-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62985-4

  • Online ISBN: 978-3-030-62986-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics