Skip to main content

On-Site Hydraulic Characterization Tests

  • Chapter
  • First Online:
CO2 Injection in the Network of Carbonate Fractures

Part of the book series: Petroleum Engineering ((PEEN))

  • 278 Accesses

Abstract

Deep saline aquifers are target for carbon sequestration since these geological structures abound in many areas worldwide. Hydraulic characterization tests are focused on site feasibility assessment to inject CO2 in an efficient and safely manner. For this, it is necessary to carry out both laboratory and field tests to determine hydraulic properties and operating parameters such as permeability and injectivity in the reservoir, and the trapping degree of the structural complex. CO2 injection experiences usually come from projects conducted in aquifers composed by sandstones and similar rocks, unlike those carried out in carbonates that are quite limited. Sometimes carbonates are porous mediums, but in other cases, primary permeability is really poor being the fluid transmissivity mainly through the fracture network. Moreover, geochemical reactivity produced by the acidification of the mixture of CO2 and resident brine plays a key role in these cases. This chapter address the innovative on-site hydraulic characterization tests conducted in the deep saline aquifer of Hontomín Technology Development Plant (Spain), which is composed of naturally fractured carbonates with low primary permeability. The impacts of artificial brine and CO2 migration through the fracture network are described, analyzed and discussed, considering that produces hydrodynamic, mechanical and geochemical effects different from those caused by the injection in mediums with a high matrix permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S., & Zweigel, P. (Eds.). (2008). Best practice for the storage of CO2 in saline aquifers-observations and guidelines from the SACS and CO2STORE projects (Vol. 14). British Geological Survey. Available online https://core.ac.uk/download/pdf/63085.pdf. Accessed November 5, 2019.

  2. Gupta, N. (2008). The Ohio River valley CO2 storage project. AEP Mountaineer Plan (Final technical report). West Virginia: Battelle Columbus Operations. Available online https://digital.library.unt.edu/ark:/67531/metadc929044/. Accessed November 5, 2019.

  3. Mishra, S., Kelley, M., Zeller, E., Slee, N., Gupta, N., Battacharya, I., & Hammond, M. (2013). Maximizing the value of pressure monitoring data from CO2 sequestration projects. Energy Procedia, 37, 4155–4165. Available online https://doi.org/10.1016/j.egypro.2013.06.317. Accessed November 5, 2019.

  4. Finley, R. J., Frailey, S. M., Leetaru, H. E., Senel, O., Couëslan, M. L., & Scott, M. (2013). Early operational experience at a one-million tonne CCS demonstration project, Decatur, Illinois, USA, Energy Procedia, 37, 6149–6155. Available online https://doi.org/10.1016/j.egypro.2013.06.544. Accessed November 5, 2019

  5. Worth, K., White, D., Chalaturnik, R., Sorensen, J., Hawkes, C., Rostron, B., et al. (2014). Aquistore project measurement, monitoring, and verification: From concept to CO2 injection. Energy Procedia, 63, 3202–3208. Available online https://doi.org/10.1016/j.egypro.2014.11.345. Accessed November 5, 2019.

  6. Wilson, M., & Monea, M. (2004). IEA GHG Weyburn CO2 monitoring & storage project (Summary report 2000–2004). Available online https://ieaghg.org/docs/general_publications/weyburn.pdf. Accessed November 5, 2019.

  7. Liu, H., Tellez, B. G., Atallah, T., & Barghouty, M. (2012). The role of CO2 capture and storage in Saudi Arabia’s energy future. International Journal of Greenhouse Gas Control, 11, 163–171. Available online https://doi.org/10.1016/j.ijggc.2012.08.008. Accessed November 5, 2019.

  8. The Compostilla Project «OXYCFB300» carbon capture and storage demonstration project. Knowledge sharing FEED report. Global CCS Institute publications. Available online https://hub.globalccsinstitute.com/sites/default/files/publications/137158/Compostilla-project-OXYCFB300-carbon-capture-storage-demonstration-project-knowledge-sharing-FEED-report.pdf. Accessed November 5, 2019.

  9. Rubio, F. M., Garcia, J., Ayala, C., Rey, C., García Lobón, J. L., Ortiz, G., & de Dios, J. C. (2014). Gravimetric characterization of the geological structure of Hontomín. In 8a Asamblea Hispano-Lusa de Geodesia y Geofísica, Évora.

    Google Scholar 

  10. Spane, F. A., Thorne, P. D., Gupta, N., Jagucki, P., Ramakrishnan, T. S., & Mueller, N. (2006). Results obtained from reconnaissance-level and detailed reservoir characterization methods utilized for determining hydraulic property distribution characteristics at Mountaineer AEP 1. In PROCEEDINGS, CO2SC Symposium, Lawrence Berkeley National Laboratory, Berkeley, CA, March 20–22, 2006. Available online https://www.osti.gov/servlets/purl/881621#page=163. Accessed November 13, 2019.

  11. de Dios, J. C., Delgado, M. A., Marín, J. A., Salvador, I., Álvarez, I., Martinez, C., & Ramos, A. (2017). Hydraulic characterization of fractured carbonates for CO2 geological storage: experiences and lessons learned in Hontomín Technology Development Plant. International Journal of Greenhouse Gas Control, 58C, 185–200.

    Google Scholar 

  12. Alcalde, J., Marzán, I., Saura, E., Martí, D., Ayarza, P., Juhlin, C., et al. (2014). 3D geological characterization of the Hontomín CO2 storage site, Spain: Multidisciplinary approach from seismic, well-log and regional data. Tectonophysics, 627, 6–25.

    Google Scholar 

  13. Le Gallo, Y., & de Dios, J. C. (2018). Geological model of a storage complex for a CO2 storage operation in a naturally-fractured carbonate formation. Geosciences, 8(9), 354–367. Available online https://doi.org/10.3390/geosciences8090354. Accessed November 13, 2019.

  14. Enabling on-shore CO2 storage in Europe. EC Horizon 2020. Available online https://www.enos-project.eu/

  15. de Dios, J. C., Delgado, M. A., Marín, J. A., Martinez, C., Ramos, A., Salvador, I., & Valle, L. (2016). Short-term effects of impurities in the CO2 stream injected into fractured carbonates. International Journal of Greenhouse Gas Control, 54, 727–736.

    Google Scholar 

  16. Gastine, M., Berenblyum, R., Czernichowski-Lauriol, I., de Dios, J. C., Audigane, P., Hladik, V., et al. (2017). Enabling onshore CO2 storage in Europe: Fostering international cooperation around pilot and test sites. Energy Procedia, 114, 5905–5915.

    Google Scholar 

  17. Le Gallo, Y., de Dios, J. C., Salvador, I., & Acosta Carballo, T. (2017). Dynamic characterization of fractured carbonates at the Hontomín CO2 storage site. In EGU General Assembly Conference 2017. EGU2017-3468-1 (Vol. 19, p. 3468).

    Google Scholar 

  18. Accelerating CCS Technologies. Available online https://www.act-ccs.eu/

  19. de Dios, J. C., & Martínez, R. (2019). The permitting procedure for CO2 geological storage for research purposes in a deep saline aquifer in Spain. International Journal of Greenhouse Gas Control, 91, 102822. Available online https://doi.org/10.1016/j.ijggc.2019.102822

  20. de Dios, J. C., Álvarez, I., & Delgado, M. A. (2018). Laboratory procedures for petrophysical characterization and control of CO2 geological storage in deep saline aquifers. Spanish CO2 Technology Platform (PTECO2) Publications. Available online https://www.pteco2.es/es/publicaciones/procedimientos-de-laboratorio-para-la-caracterizacion-petrofisica-y-el-control-de-almacenes-geologicos-de-co2-en-acuiferos-salinos-profundos

  21. Valle, L. (2012). ATAP design of a device for dynamic and static petrophysical studies of interaction between rock-brine-supercritical CO2 in deep saline aquifers. In GERG Academic Network Event, Brussels (Belgium), June 14–15. Available online https://www.gerg.eu/publications/academic-network-2012. Accessed November 26, 2019.

  22. Valle, L. (2014). Hontomín reservoir condition tests. In IV Spanish-French Symposium on CO2 Geological Storage, May 13–14, 2014.

    Google Scholar 

  23. SOLEXPERTS AG. Company profile. Available online https://www.solexperts.com. Accessed November 28, 2019.

  24. Li, G., Lornwongngam, A., & Roegiers, J. C. (2009). Critical review of leak-off test as a practice for determination of in-situ stresses. ARMA-09-003. American Rock Mechanics Association. Available online https://www.onepetro.org/conference-paper/ARMA-09-003. Accessed December 5, 2019.

  25. Vilarasa, V., Olivella, S., Carrera, J., & Rutqvist, J. (2014). Long-term impacts of cold CO2 injection on the cap rock integrity. International Journal of Green House Gas Control, 24, 1–13. Available online https://doi.org/10.1016/j.ijggc.2014.02.016. Accessed December 5, 2019.

  26. Wiese, B., Böhner, J., Enachescu, C., Würdemann, H., & Zimmermann, G. (2010). Hydraulic characterisation of the Stuttgart formation at the pilot test site for CO2 storage, Ketzin, Germany. International Journal of Greenhouse Gas Control, 4, 960–971.

    Google Scholar 

  27. Dake, L. P. (1998). Fundamentals of reservoir engineering.

    Google Scholar 

  28. Saphir pressure transient analysis. KAPPA Engineering. Available online https://www.kappaeng.com/software/saphir/overview. Accessed January 20, 2020.

  29. de Dios, J. C., Le Gallo, Y., & Marín, J. A. (2019). Innovative CO2 injection strategies in carbonates and advanced modeling for numerical investigation. Fluids, 4(1), 52. Available online https://doi.org/10.3390/fluids4010052

  30. Berkeley Lab. (2016). Available online https://ipo.lbl.gov/lbnl1613/. Accessed January 20, 2020.

Download references

Acknowledgements

The experiences and results showed in this chapter form part of the project “OXYCFB 300” funded by the European Energy Program for Recovery (EEPR) and the Spanish Government through Foundation Ciudad de la Energía-CIUDEN F.S.P. Authors acknowledge the role of the funding entities, project partners and collaborators without which the project would not have been completed successfully.

This document reflects only the authors’ view and that European Commission or Spanish Government are not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Carlos de Dios .

Editor information

Editors and Affiliations

Glossary

ATAP

Alta Temperatura y Alta Presión

BHP

Bottom hole pressure

BHT

Bottom hole temperature

BOP

Blowout preventer

CT

Computer tomography

CTIW

Connectivity test inter wells

DAS

Distributed Acoustic Sensing System

DTS

Distributed Temperature Sensing System

ERT

Electric Resistivity Tomography

HA

Observation well

HDDP

Heavy Duty Double Packer system

HI

Injection well

LOP

Leak off pressure

LOT

Leak off test

MD

Measured depth

OM

Optical Microscopy

PTFS

Permeability test at field scale

Q

Flow rate

SEM

Scanning Electrode Microscopy

tfall off

Fall off period

tinjection

Injection period

WHP

Well head pressure

WHT

Well head temperature

XRD

X-Ray Diffraction

XRF

X-Ray Fluorescence

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Dios, J.C., Martínez, C., Ramos, A., Marín, J.A., Artieda, J. (2021). On-Site Hydraulic Characterization Tests. In: de Dios, J.C., Mishra, S., Poletto, F., Ramos, A. (eds) CO2 Injection in the Network of Carbonate Fractures. Petroleum Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-62986-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62986-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62985-4

  • Online ISBN: 978-3-030-62986-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics