Skip to main content

Integerwise Functional Bootstrapping on TFHE

  • Conference paper
  • First Online:
Information Security (ISC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12472))

Included in the following conference series:

Abstract

We propose a new technique for implementing an arbitrary 1-variable function during a bootstrapping procedure based on an integerwise variant of the fully homomorphic encryption scheme TFHE. The integerwise TFHE was implicit in the original TFHE paper (Asiacrypt’ 2016), and Bourse et al. provided an explicit form (CRYPTO’ 2018). However, the modified integerwise TFHE scheme can perform only the homomorphic evaluations of the integer addition and the sign function, and thus, the application of the scheme is restricted.

Our scheme has diverse functionalities of the integerwise TFHE scheme. Based on our bootstrapping procedure, we propose several useful basic functions: homomorphic equality testing, multiplication by a binary number and a division algorithm. We also derive empirical results that show that our division algorithm is approximately \(3.4\)x faster than the fastest division algorithm in the literature based on fully homomorphic encryption schemes, with a runtime less than 1 s for each 4-bit integer division task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Precisely, although we can perform binary multiplication on \({m_{\mathrm {int}}}= -B\) or B, which is equivalent to \({m_{\mathrm {int}}}= 0\), we omit \(-B\) from the space of input \({m_{\mathrm {int}}}\) for simplicity.

References

  1. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In: NDSS Symposium 2015 (2015). https://doi.org/10.14722/ndss.2015.23241

  2. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_17

    Chapter  Google Scholar 

  3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS 2012, pp. 309–325. ACM (2012). https://doi.org/10.1145/2090236.2090262

  4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS 2011, pp. 97–106. IEEE (2011). https://doi.org/10.1109/FOCS.2011.12

  5. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  6. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS 2014, pp. 1–12. ACM (2014). https://doi.org/10.1145/2554797.2554799

  7. Carpov, S., Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: TFHE: Fast fully homomorphic encryption over the torus (2019). https://tfhe.github.io/tfhe/. Accessed Jun 2020

  8. Çetin, G.S., Doröz, Y., Sunar, B., Martin, W.J.: Arithmetic using word-wise homomorphic encryption. Cryptology ePrint Archive, Report 2015/1195 (2015). https://eprint.iacr.org/2015/1195

  9. Çetin, G.S., Doröz, Y., Sunar, B., Savaş, E.: Depth optimized efficient homomorphic sorting. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 61–80. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8_4

    Chapter  Google Scholar 

  10. Chen, H., et al.: Microsoft SEAL: Fast and easy-to-use homomorphic encryption library (2019). https://www.microsoft.com/en-us/research/project/microsoft-seal/ Accessed Jun 2020

  11. Chen, J., Feng, Y., Liu, Y., Wu, W.: Faster binary arithmetic operations on encrypted integers. In: WCSE 2017, pp. 956–960 (2017). https://doi.org/10.18178/wcse.2017.06.166

  12. Chen, Y., Gong, G.: Integer arithmetic over ciphertext and homomorphic data aggregation. IEEE CNS 2015, 628–632 (2015). https://doi.org/10.1109/CNS.2015.7346877

    Article  Google Scholar 

  13. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_14

    Chapter  Google Scholar 

  14. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 513–536. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_20

    Chapter  Google Scholar 

  15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1

    Chapter  MATH  Google Scholar 

  16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_14

    Chapter  Google Scholar 

  17. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. J. Cryptology 33(1), 34–91 (2019). https://doi.org/10.1007/s00145-019-09319-x

    Article  MathSciNet  MATH  Google Scholar 

  18. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24

    Chapter  MATH  Google Scholar 

  19. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009). crypto.stanford.edu/craig

  20. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178. ACM (2009). https://doi.org/10.1145/1536414.1536440

  21. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49

    Chapter  Google Scholar 

  22. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  23. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: ICML 2016, vol. 48, pp. 201–210. PMLR (2016). https://doi.org/10.5555/3045390.3045413

  24. Halevi, S., Shoup, V.: HElib - An implementation of homomorphic encryption (2019). https://github.com/shaih/HElib/. Accessed Jun 2020

  25. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for secure neural network inference. In: USENIX Security 2018, pp. 1651–1669 (2018)

    Google Scholar 

  26. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  27. Narumanchi, H., Goyal, D., Emmadi, N., Gauravaram, P.: Performance analysis of sorting of FHE data: integer-wise comparison vs bit-wise comparison. In: AINA 2017, pp. 902–908. IEEE (2017). https://doi.org/10.1109/AINA.2017.85

  28. New Jersey Institute of Technology: PALISADE. https://git.njit.edu/palisade/PALISADE (2019)

  29. Okada, H., Cid, C., Hidano, S., Kiyomoto, S.: Linear depth integer-wise homomorphic division. In: Blazy, O., Yeun, C.Y. (eds.) WISTP 2018. LNCS, vol. 11469, pp. 91–106. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20074-9_8

    Chapter  Google Scholar 

  30. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34:1–34:40 (2009). https://doi.org/10.1145/1568318.1568324

    Article  MathSciNet  MATH  Google Scholar 

  31. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: 2010, pp. 420–443 (2010). https://doi.org/10.1007/978-3-642-13013-7_25

  32. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_22

    Chapter  Google Scholar 

  33. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. EUROCRYPT 2010, 24–43 (2010). https://doi.org/10.1007/978-3-642-13190-5_2

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, C., Chen, J., Wu, W., Feng, Y.: Homomorphically encrypted arithmetic operations over the integer ring. In: Bao, F., Chen, L., Deng, R.H., Wang, G. (eds.) ISPEC 2016. LNCS, vol. 10060, pp. 167–181. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49151-6_12

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Benjamin Curtis and Rachel Player for their comments on early versions of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Okada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Okada, H., Kiyomoto, S., Cid, C. (2020). Integerwise Functional Bootstrapping on TFHE. In: Susilo, W., Deng, R.H., Guo, F., Li, Y., Intan, R. (eds) Information Security. ISC 2020. Lecture Notes in Computer Science(), vol 12472. Springer, Cham. https://doi.org/10.1007/978-3-030-62974-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62974-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62973-1

  • Online ISBN: 978-3-030-62974-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics