Skip to main content

Why Current Statistical Approaches to Ransomware Detection Fail

  • Conference paper
  • First Online:
Information Security (ISC 2020)

Abstract

The frequent use of basic statistical techniques to detect ransomware is a popular and intuitive strategy; statistical tests can be used to identify randomness, which in turn can indicate the presence of encryption and, by extension, a ransomware attack. However, common file formats such as images and compressed data can look random from the perspective of some of these tests. In this work, we investigate the current frequent use of statistical tests in the context of ransomware detection, primarily focusing on false positive rates. The main aim of our work is to show that the current over-dependence on simple statistical tests within anti-ransomware tools can cause serious issues with the reliability and consistency of ransomware detection in the form of frequent false classifications. We determined thresholds for five key statistics frequently used in detecting randomness, namely Shannon entropy, chi-square, arithmetic mean, Monte Carlo estimation for Pi and serial correlation coefficient. We obtained a large dataset of 84,327 files comprising of images, compressed data and encrypted data. We then tested these thresholds (taken from a variety of previous publications in the literature where possible) against our dataset, showing that the rate of false positives is far beyond what could be considered acceptable. False positive rates were often above 50% and even above 90% on several occasions. False negative rates were also generally between 5% and 20%, numbers which are also far too high. As a direct result of these experiments, we determine that relying on these simple statistical approaches is not good enough to detect ransomware attacks consistently. We instead recommend the exploration of higher-order statistics such as skewness and kurtosis for future ransomware detection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-rimy, B.A.S., Maarof, M.A., Shaid, S.Z.M.: Ransomware threat success factors, taxonomy, and countermeasures: a survey and research directions. Comput. Secur. 74, 144–166 (2018)

    Article  Google Scholar 

  2. Constantin, L.: More targeted, sophisticated and costly: Why ransomware might be your biggest threat (February 2020). https://www.csoonline.com/article/3518864/more-targeted-sophisticated-and-costly-why-ransomware-might-be-your-biggest-threat.html

  3. Continella, A., et al.: Shieldfs: a self-healing, ransomware-aware filesystem. In: Proceedings of 32nd Annual Conference on Computer Security Applications, pp. 336–347 (2016)

    Google Scholar 

  4. Digital Corpora: (2018). https://digitalcorpora.org

  5. Esparza, J.M., Blueliv: spanish consultancy everis suffers bitpaymer ransomware attack: a brief analysis (November 2019). https://www.blueliv.com/cyber-security-and-cyber-threat-intelligence-blog-blueliv/research/everis-bitpaymer-ransomware-attack-analysis-dridex/

  6. Pearson, F.R.S.K.: X. on the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. London Edinb. Dublin Philos. Mag. J. Sci. 50(302), 157–175 (1900). https://doi.org/10.1080/14786440009463897

    Article  MATH  Google Scholar 

  7. Genç, Z.A., Lenzini, G., Ryan, P.Y.A.: Next generation cryptographic ransomware. In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 385–401. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03638-6_24

    Chapter  Google Scholar 

  8. Hunter, J.D.: Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  9. Hurley-Smith, D., Patsakis, C., Hernandez-Castro, J.: On the unbearable lightness of FIPS 140–2 randomness tests. IEEE Trans. Inf. Forensics Secur. (2020)

    Google Scholar 

  10. Kharraz, A., Arshad, S., Mulliner, C., Robertson, W., Kirda, E.: UNVEIL: a large-scale, automated approach to detecting ransomware. In: 25th USENIX Security Symposium (USENIX Security 16), pp. 757–772 (2016)

    Google Scholar 

  11. Kharraz, A., Kirda, E.: Redemption: real-time protection against ransomware at end-hosts. In: Dacier, M., Bailey, M., Polychronakis, M., Antonakakis, M. (eds.) RAID 2017. LNCS, vol. 10453, pp. 98–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66332-6_5

    Chapter  Google Scholar 

  12. Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L., Kirda, E.: Cutting the gordian knot: a look under the hood of ransomware attacks. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp. 3–24. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20550-2_1

    Chapter  Google Scholar 

  13. Mbol, F., Robert, J.-M., Sadighian, A.: An efficient approach to detect TorrentLocker ransomware in computer systems. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 532–541. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_32

    Chapter  Google Scholar 

  14. McIntosh, T., Jang-Jaccard, J., Watters, P., Susnjak, T.: The inadequacy of entropy-based ransomware detection. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. CCIS, vol. 1143, pp. 181–189. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36802-9_20

    Chapter  Google Scholar 

  15. Mehnaz, S., Mudgerikar, A., Bertino, E.: RWGuard: a real-time detection system against cryptographic ransomware. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 114–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-5_6

    Chapter  Google Scholar 

  16. Micro, T.: Ransomware (September 2016). https://www.trendmicro.com/vinfo/us/security/definition/ransomware

  17. Microsoft: kernel-mode driver architecture design guide (June 2017). https://docs.microsoft.com/en-gb/windows-hardware/drivers/kernel/

  18. OpenSSL Software Foundation: Openssl. https://www.openssl.org

  19. Palisse, A., Durand, A., Le Bouder, H., Le Guernic, C., Lanet, J.-L.: Data aware defense (DaD): towards a generic and practical ransomware countermeasure. In: Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds.) NordSec 2017. LNCS, vol. 10674, pp. 192–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70290-2_12

    Chapter  Google Scholar 

  20. Pont, J., Abu Oun, O., Brierley, C., Arief, B., Hernandez-Castro, J.: A roadmap for improving the impact of anti-ransomware research. In: Askarov, A., Hansen, R.R., Rafnsson, W. (eds.) NordSec 2019. LNCS, vol. 11875, pp. 137–154. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35055-0_9

    Chapter  Google Scholar 

  21. Scaife, N., Carter, H., Traynor, P., Butler, K.R.: Cryptolock (and drop it): stopping ransomware attacks on user data. In: 36th International Conference on Distributed Computing Systems (ICDCS), pp. 303–312. IEEE (2016)

    Google Scholar 

  22. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  23. Stat Trek: Chi-square test for independence (2020). https://stattrek.com/chi-square-test/independence.aspx

  24. Tidy, J.: How a ransomware attack cost one firm £45m (June 2019). https://www.bbc.co.uk/news/business-48661152

  25. W3Techs: Usage statistics of webp for websites (2020). https://w3techs.com/technologies/details/im-webp

  26. Walker, J.: Ent (2008). https://www.fourmilab.ch/random/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie Pont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pont, J., Arief, B., Hernandez-Castro, J. (2020). Why Current Statistical Approaches to Ransomware Detection Fail. In: Susilo, W., Deng, R.H., Guo, F., Li, Y., Intan, R. (eds) Information Security. ISC 2020. Lecture Notes in Computer Science(), vol 12472. Springer, Cham. https://doi.org/10.1007/978-3-030-62974-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62974-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62973-1

  • Online ISBN: 978-3-030-62974-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics