Skip to main content

A Simple Step-Stress Model for Lehmann Family of Distributions

  • Chapter
  • First Online:
Advances in Statistics - Theory and Applications

Abstract

In this chapter, we consider a flexible simple step-stress model for the Lehmann family of distributions, also known as the exponentiated distributions, when the data are Type-II censored. At each stress level, we assume that the lifetime distribution of the experimental units follows a member of the Lehmann family of distributions with different shape and scale parameters. The distribution under each stress level is connected through a failure rate-based step-stress accelerated life testing (SSALT) model. We obtain the maximum likelihood estimators (MLEs) of the unknown model parameters. It is observed that the MLEs of the unknown parameters do not always exist, and whenever they exist, they are not in closed form. However, the failure rate-based SSALT model assumption simplifies the inference problem to a significant extent. It is not possible to obtain the exact distribution of the MLEs, and hence, we have constructed the asymptotic confidence intervals (CIs) based on the observed Fisher information matrix. We have also obtained the bootstrap CIs for model parameters. Extensive simulation study is carried out when the lifetime distribution is a two-parameter generalized exponential (GE) distribution, an important member of the Lehmann family. A real data set has been analyzed assuming that the lifetimes follow a few important members of the Lehmann family for illustration purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hamid, A. H., Al-Hussaini, E. K. (2009). Estimation in step-stress accelerated life tests for the exponentiated exponential distribution with Type -I censoring. Computational Statistics & Data Analysis, 53, 1328–1338.

    Article  MathSciNet  Google Scholar 

  • Al-Hussaini, E. K., Ahsnullah, M. (2015). Exponentiated distributions. Atlantis Studies in Probability and Statistics (Vol. 21). Paris, France: Atlantis Press.

    Google Scholar 

  • Arnold, B. C., Balakrishnan, N., Nagaraja, H. N. (1992). A first course in order statistics (Vol. 54). Philadelphia: Society for Industrial and Applied Mathematics.

    MATH  Google Scholar 

  • Bagdonavičius, V. (1978). Testing hypothesis of the linear accumulation of damages. Probability Theory and Its Applications, 23, 403–408.

    Google Scholar 

  • Bhattacharyya, G. K., Soejoeti, Z. (1989). A tampered failure rate model for step-stress accelerated life test. Communication in Statistics - Theory and Methods, 18, 1627–1643.

    Article  MathSciNet  Google Scholar 

  • Cox, D. R. (1992). Regression models and life-tables. Journal of the Royal Statistical Society: Series B(Methodological), 34, 187–220.

    MathSciNet  Google Scholar 

  • El-Monem, G. A., Jaheen, Z. (2015). Maximum likelihood estimation and bootstrap confidence intervals for a simple step-stress accelerated generalized exponential model with Type -II censored data. Far East Journal of Theoretical Statistics, 50, 111–124.

    Article  MathSciNet  Google Scholar 

  • Greven, S., John Bailer, A., Kupper, L. L., Muller, K. E., Craft, J. L. (2004). A parametric model for studying organism fitness using step-stress experiments. Biometrics, 60, 793–799.

    Article  MathSciNet  Google Scholar 

  • Gupta, R. C., Gupta, P. L., Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives. Communications in Statistics-Theory and Methods, 27, 887–904.

    Article  MathSciNet  Google Scholar 

  • Gupta, R. D., Kundu, D. (1999). Generalized exponential distributions. Australian & New Zealand Journal of Statistics, 41, 173–188.

    Article  MathSciNet  Google Scholar 

  • Ismail, A. A. (2014). Estimation under failure-censored step-stress life test for the generalized exponential distribution parameters. Indian Journal of Pure and Applied Mathematics, 45, 1003–1015.

    Article  MathSciNet  Google Scholar 

  • Kateri, M., Kamps, U. (2015). Inference in step-stress models based on failure rates. Statistical Papers, 56, 639–660.

    Article  MathSciNet  Google Scholar 

  • Kateri, M., Kamps, U. (2017). Hazard rate modeling of step-stress experiments. Annual Review of Statistics and Its Application, 4, 147–168.

    Article  Google Scholar 

  • Khamis, I. H., Higgins, H. H. (1998). A new model for step-stress testing. IEEE Transactions on Reliability, 47, 131–134.

    Article  Google Scholar 

  • Madi, M. T. (1993). Multiple step-stress accelerated life test: the tampered failure rate model. Communication in Statistics - Theory and Methods, 22, 2631–2639.

    Article  MathSciNet  Google Scholar 

  • Nadarajah, S. (2011). The Exponentiated exponential distribution. Advance in Statistical Analysis, 95, 219–251.

    Article  MathSciNet  Google Scholar 

  • Nelson, W. (1980). Accelerated life testing-step-stress models and data analyses. IEEE Transactions on Reliability, 29, 103–108.

    Article  Google Scholar 

  • Samanta, D., Kundu, D. (2018). Order restricted inference of a multiple step-stress model. Computational Statistics & Data Analysis, 117, 62–75.

    Article  MathSciNet  Google Scholar 

  • Sarhan, A. M., Kundu, D. (2009). Generalized linear failure rate distribution. Communications in Statistics-Theory and Methods, 38, 642–660.

    Article  MathSciNet  Google Scholar 

  • Sedyakin, N. M. (1966). On one physical principle in reliability theory. Technical Cybernatics, 3, 80–87.

    Google Scholar 

  • Shawky, A. I., Abu-Zinadah, H. H. (2009). Exponentiated Pareto distribution: different method of estimations. International Journal of Contemporary Mathematical Sciences, 14, 677–693.

    MathSciNet  MATH  Google Scholar 

  • Surles, J. G., Padgett, W. J. (2005). Some properties of a scaled Burr type X distribution. Journal of Statistical Planning and Inference, 128, 271–280.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their constructive comments that had helped to improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Kundu .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Lehmann Family of Distributions

1.1.1 Normal Equations for the Type-II Censoring Case

The normal equations associated with the log-likelihood function (13) are given by

$$\displaystyle \begin{aligned} \frac{\partial l^{II}}{\partial \alpha_{1}} = & \frac{n_{1}}{\alpha_{1}} + \sum_{k=1}^{n_{1}}\ln G_0(t_{k:n};\lambda_1) -\frac{(n-n_1)\{G_0(\tau;\lambda_1)\}^{\alpha_1}\ln G_0(\tau;\lambda_1)}{1-\{G_0(\tau;\lambda_1)\}^{\alpha_1}}=0 ,{} \end{aligned} $$
(A.1)
$$\displaystyle \begin{aligned} \\ \frac{\partial l^{II}}{\partial \lambda_{1}} = & (\alpha_1-1)\sum_{k=1}^{n_1}\frac{m_0(t_{k:n};\lambda_1)}{G_0(t_{k:n};\lambda_1)} -\frac{(n-n_1)\alpha_1 \{G_0(\tau;\lambda_1)\}^{\alpha_1-1}m_0(\tau;\lambda_1)}{1-\{G_0(\tau;\lambda_1)\}^{\alpha_1}} \\ & +\sum_{k=1}^{n_1}\frac{n_0(t_{k:n};\lambda_1)}{g_0(t_{k:n};\lambda_1)}=0, {} \end{aligned} $$
(A.2)
$$\displaystyle \begin{aligned} \\ \frac{\partial l^{II}}{\partial \alpha_{2}} = & \frac{n_{2}}{\alpha_{2}} - \sum_{k=n_1+1}^{r}\ln G_0(t_{k:n};\lambda_1) +\frac{(n-n_1)\{G_0(\tau;\lambda_2)\}^{\alpha_2}\ln G_0(\tau;\lambda_2)}{1-\{G_0(\tau;\lambda_2)\}^{\alpha_2}} \\ & -\frac{(n-r)\{G_0(t_{r:n};\lambda_2)\}^{\alpha_2}\ln G_0(t_{r:n};\lambda_2)}{1-\{G_0(t_{r:n};\lambda_2)\}^{\alpha_2}}=0 ,{} \end{aligned} $$
(A.3)
$$\displaystyle \begin{aligned} \\ \frac{\partial l^{II}}{\partial \lambda_{2}} = & (\alpha_2-1)\sum_{k=n_1+1}^{r}\frac{m_0(t_{k:n};\lambda_2)}{G_0(t_{k:n};\lambda_2)} +\frac{(n-n_1)\alpha_2 \{G_0(\tau;\lambda_2)\}^{\alpha_2-1}m_0(\tau;\lambda_2)}{1-\{G_0(\tau;\lambda_2)\}^{\alpha_2}} \\ & +\sum_{k=n_1+1}^{r}\frac{n_0(t_{k:n};\lambda_2)}{g_0(t_{k:n};\lambda_2)}-\frac{(n-r)\alpha_2 \{G_0(t_{r:n};\lambda_2)\}^{\alpha_2-1}m_0(t_{r:n};\lambda_2)}{1-\{G_0(t_{r:n};\lambda_2)\}^{\alpha_2}}=0, {} \end{aligned} $$
(A.4)

where

$$\displaystyle \begin{aligned} m_0(.;\lambda_1) &= \frac{\partial }{\partial \lambda_{1}}G_0(.;\lambda_1) ,\:\:\: n_0(.;\lambda_1) = \frac{\partial }{\partial \lambda_{1}}g_0(.;\lambda_1), \\ m_0(.;\lambda_2) &= \frac{\partial }{\partial \lambda_{2}}G_0(.;\lambda_2) ,\:\:\: n_0(.;\lambda_2) = \frac{\partial }{\partial \lambda_{2}}g_0(.;\lambda_2) . \end{aligned} $$

Now multiplying (A.1) by \(\dfrac {\alpha _1 m_0(\tau ;\lambda _1)}{G_0(\tau ;\lambda _1)}\) and (A.2) by \(\ln G_0(\tau ;\lambda _1),\) respectively, we have

$$\displaystyle \begin{aligned} \frac{n_{1}m_0(\tau;\lambda_1)}{G_0(\tau;\lambda_1)} &-\frac{(n-n_1)\alpha_1\{G_0(\tau;\lambda_1)\}^{\alpha_1-1}m_0(\tau;\lambda_1) \ln G_0(\tau;\lambda_1)}{1-\{G_0(\tau;\lambda_1)\}^{\alpha_1}} \\ &+ \frac{\alpha_{1}m_0(\tau;\lambda_1)}{G_0(\tau;\lambda_1)} \sum_{k=1}^{n_{1}}\ln G_0(t_{k:n};\lambda_1)= 0 , \end{aligned} $$
(A.5)
$$\displaystyle \begin{aligned} &-\frac{(n-n_1)\alpha_1\{G_0(\tau;\lambda_1)\}^{\alpha_1-1}m_0(\tau;\lambda_1) \ln G_0(\tau;\lambda_1)}{1-\{G_0(\tau;\lambda_1)\}^{\alpha_1}}\\ &+ \ln G_0(\tau;\lambda_1)\sum_{k=1}^{n_1}\frac{n_0(t_{k:n};\lambda_1)}{g_0(t_{k:n};\lambda_1)} +(\alpha_1-1)\ln G_0(\tau;\lambda_1)\sum_{k=1}^{n_1}\frac{m_0(t_{k:n};\lambda_1)}{G_0(t_{k:n};\lambda_1)} = 0. \end{aligned} $$
(A.6)

Subtracting (A.6) from (A.5), and after little simplification, finally we establish the following relation and \(\widehat {\alpha }_{1}(\lambda _{1})\) is

$$\displaystyle \begin{aligned} \begin{array}{rcl}{} {} & &\displaystyle \dfrac{ \ln [G_0(\tau;\lambda_1)] \sum_{k=1}^{n_{1}}\dfrac{n_o(t_{k:n};\lambda_1)}{g_0(t_{k:n};\lambda_1)} - \dfrac{n_{1}m_o(\tau;\lambda_1)}{G_0(\tau;\lambda_1)}- \ln [G_0(\tau;\lambda_1)] \sum_{k=1}^{n_{1}}\dfrac{m_o(t_{k:n};\lambda_1)}{G_0(t_{k:n};\lambda_1)}}{\dfrac{ m_o(\tau;\lambda_1)}{G_0(\tau;\lambda_1)} -\ln [G_0(\tau;\lambda_1)] \sum_{k=1}^{n_{1}}\dfrac{m_o(t_{k:n};\lambda_1)}{G_0(t_{k:n};\lambda_1)} }. \\ \end{array} \end{aligned} $$
(A.7)

1.1.2 Normal Equations for the Complete Sample Case

$$\displaystyle \begin{aligned} \frac{\partial l^{c}}{\partial \alpha_{1}} &=\frac{n_{1}}{\alpha_{1}} + \sum_{k=1}^{n_{1}}\ln G_0(t_{k:n};\lambda_1) -\frac{(n-n_1)\{G_0(\tau;\lambda_1)\}^{\alpha_1}\ln G_0(\tau;\lambda_1)}{1-\{G_0(\tau;\lambda_1)\}^{\alpha_1}}=0 , \\ \\ \frac{\partial l^{c}}{\partial \lambda_{1}} &=(\alpha_1-1)\sum_{k=1}^{n_1}\frac{m_o(t_{k:n};\lambda_1)}{G_0(t_{k:n};\lambda_1)}-\frac{(n-n_1)\alpha_1 \{G_0(\tau;\lambda_1)\}^{\alpha_1-1}m_o(\tau;\lambda_1)}{1-\{G_0(\tau;\lambda_1)\}^{\alpha_1}} \\ &\quad +\sum_{k=1}^{n_1}\frac{n_o(t_{k:n};\lambda_1)}{g_0(t_{k:n};\lambda_1)} =0, \\ \\ \frac{\partial l^{c}}{\partial \alpha_{2}} &=\frac{n_{2}}{\alpha_{2}} - \sum_{k=n_1+1}^{r}\ln G_0(t_{k:n};\lambda_1) +\frac{(n-n_1)\{G_0(\tau;\lambda_2)\}^{\alpha_2}\ln G_0(\tau;\lambda_2)}{1-\{G_0(\tau;\lambda_2)\}^{\alpha_2}} =0 ,\\ \\ \frac{\partial l^{c}}{\partial \lambda_{2}} &=(\alpha_2-1)\sum_{k=n_1+1}^{r}\frac{m_o(t_{k:n};\lambda_2)}{G_0(t_{k:n};\lambda_2)} +\frac{(n-n_1)\alpha_2 \{G_0(\tau;\lambda_2)\}^{\alpha_2-1}m_o(\tau;\lambda_2)}{1-\{G_0(\tau;\lambda_2)\}^{\alpha_2}} \\ & \quad +\sum_{k=n_1+1}^{r}\frac{n_o(t_{k:n};\lambda_2)}{g_0(t_{k:n};\lambda_2)}=0. \end{aligned} $$

1.2 Special Case: GE Distribution

1.2.1 Normal Equations for the Type-II Censoring Case

$$\displaystyle \begin{aligned} \frac{\partial l_{\mathrm{GE}}}{\partial \alpha_{1}} & = \frac{n_{1}}{\alpha_{1}} + \sum_{k=1}^{n_{1}}\ln (1-e^{-\lambda_{1} t_{k:n}}) - A(\alpha_{1},\lambda_{1})= 0, \end{aligned} $$
(A.8)
$$\displaystyle \begin{aligned} \frac{\partial l_{\mathrm{GE}}}{\partial \lambda_{1}} &=\frac{n_{1}}{\lambda_{1}} - \sum_{k=1}^{n_{1}}t_{k:n} +(\alpha_{1}-1)\sum_{k=1}^{n_{1}}\frac{t_{k:n}e^{-\lambda_{1}t_{k:n}}}{1-e^{-\lambda_{1}t_{k:n}}} - B(\alpha_{1},\lambda_{1})=0 , \end{aligned} $$
(A.9)
$$\displaystyle \begin{aligned} \frac{\partial l_{\mathrm{GE}}}{\partial \alpha_{2}} &= \frac{n_{2}}{\alpha_{2}} + \sum_{k=n_{1} +1}^{n_{1} + n_{2}}\ln (1-e^{-\lambda_{2} t_{k:n}}) + C_{1}(\alpha_{2},\lambda_{2}) -C_{2}(\alpha_{2},\lambda_{2}) =0, \end{aligned} $$
(A.10)
$$\displaystyle \begin{aligned} \frac{\partial l_{\mathrm{GE}}}{\partial \lambda_{2}} &= \frac{n_{2}}{\lambda_{2}}-\sum_{k=n_{1} +1}^{n_{1} + n_{2}}t_{k:n} +(\alpha_{2}-1)\sum_{k=n_{1} +1}^{n_{1} + n_{2}}\frac{t_{k:n}e^{-\lambda_{2}t_{k:n}}}{1-e^{-\lambda_{2}t_{k:n}}} + D_{1}(\alpha_{2},\lambda_{2}) \\ & \quad -D_{2}(\alpha_{2},\lambda_{2}) =0 , \end{aligned} $$
(A.11)

where

$$\displaystyle \begin{aligned} A(\alpha_{1},\lambda_{1}) &=\dfrac{(n-n_{1})\big(1-e^{-\lambda_{1} \tau}\big)^{\alpha_{1}}}{1-\big(1-e^{-\lambda_{1} \tau}\big)^{\alpha_{1}}}\ln \big(1-e^{-\lambda_{1} \tau}\big), \\ B(\alpha_{1},\lambda_{1})&=\dfrac{(n-n_{1})\alpha_{1}\tau e^{-\lambda_{1}\tau}\big(1-e^{-\lambda_{1} \tau}\big)^ {\alpha_{1}-1}}{1-\big(1-e^{-\lambda_{1} \tau}\big)^ {\alpha_{1}}}, \\ C_{1}(\alpha_{2},\lambda_{2})& =\dfrac{(n-n_{1})\big(1-e^{-\lambda_{2} \tau}\big)^{\alpha_{2}}}{1-\big(1-e^{-\lambda_{2} \tau}\big)^{\alpha_{2}}}\ln \big(1-e^{-\lambda_{2} \tau}\big), \\ C_{2}(\alpha_{2},\lambda_{2}) & = \dfrac{(n-r)\big(1-e^{-\lambda_{2} t_{r:n}}\big)^{\alpha_{2}}}{1-\big(1-e^{-\lambda_{2} t_{r:n}}\big)^{\alpha_{2}}}\ln \big(1-e^{-\lambda_{2} t_{r:n}}\big), \\ D_{1}(\alpha_{2},\lambda_{2})&= \dfrac{(n-n_{1})\alpha_{2}\tau\big(1-e^{-\lambda_{2} \tau}\big)^{\alpha_{2}-1}e^{-\lambda_{2}\tau}}{1-\big(1-e^{-\lambda_{2} \tau}\big)^{\alpha_{2}}}, \\ D_{2}(\alpha_{2},\lambda_{2})&=\dfrac{(n-r)\alpha_{2}t_{r:n}\big(1-e^{-\lambda_{2} t_{r:n}}\big)^{\alpha_{2}-1}e^{-\lambda_{2}t_{r:n}}}{1-\big(1-e^{-\lambda_{2} t_{r:n}}\big)^{\alpha_{2}}} . \end{aligned} $$

1.3 Elements of the Fisher Information Matrix

1.3.1 GE Distribution

The Fisher information matrix I GE(α 1, λ 1, α 2, λ 2) can be expressed using two block diagonal matrices, viz., \( I^{\mathrm {GE}}_{1}(\alpha _{1},\lambda _{1})\) and \( I^{\mathrm {GE}}_{2}(\alpha _{2},\lambda _{2})\). Thus, we have

$$\displaystyle \begin{aligned} I^{\mathrm{GE}}(\alpha_{1},\lambda_{1},\alpha_{2},\lambda_{2})= \begin{bmatrix} I^{\mathrm{GE}} _{1}(\alpha_{1},\lambda_{1}) & \textbf{0} \\ \textbf{0} & I^{\mathrm{GE}}_{2}(\alpha_{2},\lambda_{2}) \\ \end{bmatrix} \end{aligned}$$

The elements of \(\:\:I^{\mathrm {GE}}_{1}(\alpha _{1},\lambda _{1})= \begin {bmatrix} -\dfrac {\partial ^2 l^{\mathrm {GE}}}{\partial \alpha _{1}^2} & -\dfrac {\partial ^2 l^{\mathrm {GE}}}{\partial \alpha _{1} \partial \lambda _{1}}\\ \\ -\dfrac {\partial ^2 l^{\mathrm {GE}}}{\partial \alpha _{1} \partial \lambda _{1}} & -\dfrac {\partial ^2 l^{\mathrm {GE}}}{\partial \lambda _{1}^2} \\ \end {bmatrix}\) are

$$\displaystyle \begin{aligned} \frac{\partial^2 l^{\mathrm{GE}}}{\partial \alpha_{1}^2} & = -\bigg( \frac{n_{1}}{\alpha_{1}^{2}} + \frac{(n-n_{1})\big(1-e^{-\lambda_{1}\tau}\big)^{\alpha_{1}}\{\ln[1-e^{-\lambda_{1}\tau}]\}^2}{\{1-\big(1-e^{-\lambda_{1}\tau}\big)^{\alpha_ {1}}\}^{2}} \bigg), \\ {} \frac{\partial^2 l^{\mathrm{GE}}}{\partial \alpha_{1} \partial \lambda_{1}} & = \sum_{k=1}^{n_{1}}\frac{t_{k:n}e^{-\lambda_{1}t_{k:n}}}{1-e^{-\lambda_{1}t_{k:n}}} - (n-n_{1}) \tau e^{-\lambda_{1}\tau}\varrho_1(\alpha_{1},\lambda_{1}), \\ {} \frac{\partial^2 l^{\mathrm{GE}}}{\partial \lambda_{1}^2} & = -\bigg( \frac{n_{1}}{\lambda_{1}^{2}} - (\alpha_{1}-1) \psi_1(\lambda_{1}) + (n-n_{1})\alpha_{1} \tau \kappa_1(\alpha_{1},\lambda_{1},\tau) \bigg), \end{aligned} $$

where

$$\displaystyle \begin{aligned} \varrho_1(\alpha_{1},\lambda_{1}) & = \frac{\{1-r(\lambda_{1})^{\alpha_{1}}\}\big[r(\lambda_{1})^{\alpha_{1}}\{\alpha_{1}\ln(r(\lambda_{1}) + 1\}\big]+ \alpha_{1}r(\lambda_{1})^{2\alpha_{1}}\ln(r(\lambda_{1})} {r(\lambda_{1})\{1-r(\lambda_{1})^{\alpha_{1}}\}^2}, &&\\ \psi_1(\lambda_{1}) & = - \sum_{k=1}^{n_{1}}\frac{t_{k:n}^{2}e^{-\lambda_{1}t_{k:n}}}{(1-e^{-\lambda_{1}t_{k:n}})^{2}}, &&\\ \kappa_1(\alpha_{1},\lambda_{1}) & = \frac{\{1-r(\lambda_{1})^{\alpha_{1}}\}\big[r(\lambda_{1})^{\alpha_{1}-2}\tau e^{-\lambda_{1}\tau} \{\alpha_{1} e^{-\lambda_{1} \tau} - 1\}\big]+ \alpha_{1}\tau e^{-2 \lambda_{1} \tau}r(\lambda_{1})^{2\alpha_{1}-2}} {\{1-r(\lambda_{1})^{\alpha_{1}}\}^2},&&\\ r_1(\lambda_{1}) &= \big(1-e^{-\lambda_{1}\tau}\big). \end{aligned} $$

The elements of \(\:\:I^{\mathrm {GE}}_{2}(\alpha _{2},\lambda _{2})= \begin {bmatrix} -\dfrac {\partial ^2 l^{\mathrm {GE}}}{\partial \alpha _{2}^2} & -\dfrac {\partial ^2 l^{\mathrm {GE}}}{\partial \alpha _{2} \partial \lambda _{2}}\\ {} -\dfrac {\partial ^2 l^{\mathrm {GE}}}{\partial \alpha _{1} \partial \lambda _{1}} & -\dfrac {\partial ^2 l^{\mathrm {GE}}}{\partial \lambda _{2}^2} \\ \end {bmatrix} \) are

$$\displaystyle \begin{aligned} \frac{\partial^2 l^{\mathrm{GE}}}{\partial \alpha_{2}^2} & = -\bigg( \frac{n_{2}}{\alpha_{2}^{2}} -(n-n_{1})\beta_1(\alpha_{2},\lambda_{2}) + (n-r)\eta_1(\alpha_{2},\lambda_{2})\bigg), \\ \frac{\partial^2 l^{\mathrm{GE}}}{\partial \alpha_{2} \partial \lambda_{2}} & = \sum_{k=n_{1}+1}^{n_{1}+n_{2}}\frac{t_{k:n}e^{-\lambda_{2}t_{k:n}}}{1-e^{-\lambda_{2}t_{k:n}}} +(n-n_{1})\xi_1(\alpha_{2},\lambda_{2}) - (n-r)\Upsilon_1(\alpha_{2},\lambda_{2}),\\ \frac{\partial^2 l^{\mathrm{GE}}}{\partial \lambda_{2}^2} & = -\Big( \frac{n_{2}}{\lambda_{2}^{2}} - (n-n_{1})\sigma_1(\alpha_{2},\lambda_{2}) - (\alpha_{2}-1)\delta_1(\lambda_{2})+ (n-r)\zeta_1(\alpha_{2},\lambda_{2})\Big), \end{aligned} $$

where

$$\displaystyle \begin{aligned} \beta_1(\alpha_{2},\lambda_{2}) & =\frac{\big(1-e^{-\lambda_{2}\tau}\big)^{\alpha_{2}}\{\ln[1-e^{-\lambda_{2}\tau}]\}^2}{\{1-(1-e^{-\lambda_{2}\tau})^{\alpha_{2}}\}^2}, \\ \\ \eta_1(\alpha_{2},\lambda_{2}) & = \frac{\big(1-e^{-\lambda_{2} t_{r:n}}\big)^{\alpha_{2}}\{\ln[1-e^{-\lambda_{2}t_{r:n}}]\}^2}{\{1-\big(1-e^{-\lambda_{2}t_{r:n}}\big)^{\alpha_{2}}\}^2}, \\ \\ \xi_1(\alpha_{2},\lambda_{2}) & = \tau e^{-\lambda_{2}\tau} \frac{\{1-q_1(\lambda_{2})^{\alpha_{2}}\}\big[q_1(\lambda_{2})^{\alpha_{2}}\{\alpha_{2}\ln(q_1(\lambda_{2}) + 1\}\big]} {q_1(\lambda_{2})\{1-q_1(\lambda_{2})^{\alpha_{2}}\}^2} &&\\ \\ & \:\:\:\:+ \tau e^{-\lambda_{2}\tau} \frac{ \alpha_{2}q_1(\lambda_{2})^{2\alpha_{2}}\ln(q_1(\lambda_{2})} {q_1(\lambda_{2})\{1-q_1(\lambda_{2})^{\alpha_{2}}\}^2}, &&\\ \\ \Upsilon_1(\alpha_{2},\lambda_{2}) & = t_{r:n} e^{-\lambda_{2}t_{r:n}} \frac{\{1-s_1(\lambda_{2})^{\alpha_{2}}\}\big[s_1(\lambda_{2})^{\alpha_{2}}\{\alpha_{2}\ln(s_1(\lambda_{2}) + 1\}\big]} {s_1(\lambda_{2})\{1-s_1(\lambda_{2})^{\alpha_{2}}\}^2} &&\\ \\ & \:\:\:\:+ t_{r:n} e^{-\lambda_{2}t_{r:n}} \frac{ \alpha_{2}s_1(\lambda_{2})^{2\alpha_{2}}\ln(s_1(\lambda_{2})} {s_1(\lambda_{2})\{1-s_1(\lambda_{2})^{\alpha_{2}}\}^2}, &&\\ \sigma_1(\alpha_{2},\lambda_{2}) & = \alpha_{2} \tau \frac{\{1-q_1(\lambda_{2})^{\alpha_{2}}\}\big[q_1(\lambda_{2})^{\alpha_{2}-2}\tau e^{-\lambda_{2}\tau} \{\alpha_{2} e^{-\lambda_{2} \tau} - 1\}\big]} {\{1-q_1(\lambda_{2})^{\alpha_{2}}\}^2}&&\\ \\ & \:\:\:\:+ \alpha_{2} \tau \frac{ \alpha_{2}\tau e^{-2 \lambda_{2} \tau}q_1(\lambda_{2})^{2\alpha_{2}-2}} {\{1-q_1(\lambda_{2})^{\alpha_{2}}\}^2},&&\\ \\ \delta(\lambda_{2}) & = - \sum_{k=n_{1}+1}^{n_{1}+n_{2}}\left[\frac{t_{k:n}^{2}e^{-\lambda_{2}t_{k:n}}}{\big(1-e^{-\lambda_{2}t_{k:n}}\big)^{2}} \right], &&\\ \\ q_1(\lambda_{2}) &= \big(1-e^{-\lambda_{2}\tau}\big), \: s_1(\lambda_{2}) = \big(1-e^{-\lambda_{2}t_{r:n}}\big). \\ \zeta_1(\alpha_{2},\lambda_{2}) & = \alpha_{2} t_{r:n} \frac{\{1-s_1(\lambda_{2})^{\alpha_{2}}\}\big[s_1(\lambda_{2})^{\alpha_{2}-2}t_{r:n} e^{-\lambda_{2}t_{r:n}} \{\alpha_{2} e^{-\lambda_{2} t_{r:n}} - 1\}\big]} {\{1-s_1(\lambda_{2})^{\alpha_{2}}\}^2}&&\\ \\ & \:\:\:\:+ \alpha_{2} t_{r:n} \frac{ \alpha_{2}t_{r:n} e^{-2 \lambda_{2} t_{r:n}}s_1(\lambda_{2})^{2\alpha_{2}-2}} {\{1-s_1(\lambda_{2})^{\alpha_{2}}\}^2}.&&\\ \\ \end{aligned} $$

1.3.2 GR Distribution with Different Shape and Common Scale Parameter

Let the Fisher information matrix associated with the parameters α 1, λ, α 2, respectively, be

$$\displaystyle \begin{aligned} \:\:I_{\mathrm{sc}}^{\mathrm{GR}}(\alpha_{1},\lambda,\alpha_2)= \begin{bmatrix} -\dfrac{\partial^2 l_{\mathrm{sc}}^{\mathrm{GR}}}{\partial \alpha_{1}^2} & -\dfrac{\partial^2 l_{\mathrm{sc}}^{\mathrm{GR}}}{\partial \alpha_{1} \partial \lambda} & -\dfrac{\partial^2 l_{\mathrm{sc}}^{\mathrm{GR}}}{\partial \alpha_{1} \partial \alpha_2}\\ {} -\dfrac{\partial^2 l_{\mathrm{sc}}^{\mathrm{GR}}}{\partial \alpha_{1} \partial \lambda} & -\dfrac{\partial^2 l_{\mathrm{sc}}^{\mathrm{GR}}}{\partial \lambda^2} & -\dfrac{\partial^2 l_{\mathrm{sc}}^{\mathrm{GR}}}{\partial \alpha_{2} \partial \lambda} \\ {} -\dfrac{\partial^2 l_{\mathrm{sc}}^{\mathrm{GR}}}{\partial \alpha_{1} \partial \alpha_2} & -\dfrac{\partial^2 l_{\mathrm{sc}}^{\mathrm{GR}}}{\partial \alpha_{2} \partial \lambda} & -\dfrac{\partial^2 l_{\mathrm{sc}}^{\mathrm{GR}}}{ \partial \alpha_{2}^2}\\ \end{bmatrix}\end{aligned} $$

The corresponding elements are

$$\displaystyle \begin{aligned} \frac{\partial^2 l_{\mathrm{sc}}^{\mathrm{GR}}}{\partial \alpha_{1}^2} & = -\bigg( \frac{n_{1}}{\alpha_{1}^{2}} + \frac{(n-n_{1})\big(1-e^{-\lambda\tau^2}\big)^{\alpha_{1}}\{\ln[1-e^{-\lambda\tau^2}]\}^2}{\{1-\big(1-e^{-\lambda\tau^2}\big)^{\alpha_ {1}}\}^{2}} \bigg), \\ {} \frac{\partial^2 l_{\mathrm{sc}}^{\mathrm{GR}}}{\partial \alpha_{1} \partial \lambda} & = \sum_{k=1}^{n_{1}}\frac{t_{k:n}^{2}e^{-\lambda t_{k:n}^{2}}}{1-e^{-\lambda t_{k:n}^{2}}} - (n-n_{1})\varrho_3(\alpha_{1},\lambda), \: \: \: \: \frac{\partial^2 l_{\mathrm{sc}}^{\mathrm{GR}}}{\partial \alpha_{1} \partial \alpha_2} = 0, \\ {} \frac{\partial^2 l^{\mathrm{GR}}}{\partial \lambda^2} & = -\bigg( \frac{n}{\lambda^{2}} - (\alpha_{1}-1) \psi_3(\lambda) + (n-n_{1})\kappa_3(\alpha_{1},\lambda) - (n-n_{1})\sigma_3(\alpha_{2},\lambda) \\ & \:\:\quad - (\alpha_{2}-1)\delta_3(\lambda) \bigg), \\ {} \frac{\partial^2 l_{\mathrm{sc}}^{\mathrm{GR}}}{\partial \alpha_{2} \partial \lambda} & = \sum_{k=n_{1}+1}^{n_{1}+n_{2}}\frac{t_{k:n}^{2}e^{-\lambda t_{k:n}^{2}}}{1-e^{-\lambda t_{k:n}^{2}}} +(n-n_{1})\xi_3(\alpha_{2},\lambda), \\ \frac{\partial^2 l_{\mathrm{sc}}^{\mathrm{GR}}}{\partial \alpha_{2}^2} & = -\bigg( \frac{n_{2}}{\alpha_{2}^{2}} + \frac{(n-n_{1})\big(1-e^{-\lambda\tau^2}\big)^{\alpha_{2}}\{\ln[1-e^{-\lambda\tau^2}]\}^2}{\{1-(1-e^{-\lambda\tau^2})^{\alpha_ {2}}\}^{2}} \bigg), \end{aligned} $$

where

$$\displaystyle \begin{aligned} \varrho_3(\alpha_{1},\lambda) & = \tau^2 e^{-\lambda \tau^2} \frac{\{1-r_3(\lambda)^{\alpha_{1}}\}\big[r_3(\lambda)^{\alpha_{1}}\{\alpha_{1}\ln(r_3(\lambda) + 1\}\big]} {r(\lambda)\{1-r_3(\lambda)^{\alpha_{1}}\}^2} &&\\ & \:\:\:\:+ \tau^2 e^{-\lambda \tau^2} \frac{ \alpha_{1}r_3(\lambda)^{2\alpha_{1}}\ln(r_3(\lambda)} {r(\lambda)\{1-r_3(\lambda)^{\alpha_{1}}\}^2}, &&\\ {} \psi_3(\lambda) & = - \sum_{k=1}^{n_{1}}\frac{t_{k:n}^{4}e^{-\lambda t_{k:n}^{2}}}{\big(1-e^{-\lambda t_{k:n}^{2}}\big)^{2}}, &&\\ {} \kappa_3(\alpha_{1},\lambda_{1}) & = \alpha_{1} \tau^{2} \frac{\{1-r_3(\lambda)^{\alpha_{1}}\}\big[r_3(\lambda)^{\alpha_{1}-2}\tau^{2} e^{-\lambda \tau^{2}} \{\alpha_{1} e^{-\lambda \tau^{2}} - 1\}\big]} {\{1-r_3(\lambda)^{\alpha_{1}}\}^2}&&\\ & \:\:\:\:+ \alpha_{1} \tau^{2} \frac{ \alpha_{1}\tau^{2} e^{-2 \lambda \tau^{2}}r_3(\lambda)^{2\alpha_{1}-2}} {\{1-r_3(\lambda)^{\alpha_{1}}\}^2},&&\\ {} \sigma_3(\alpha_{2},\lambda) & = \alpha_{2} \tau^{2} \frac{\{1-r_3(\lambda)^{\alpha_{2}}\}\big[r_3(\lambda)^{\alpha_{2}-2}\tau^{2} e^{-\lambda \tau^{2}} \{\alpha_{2} e^{-\lambda \tau^{2}} - 1\}\big]} {\{1-r_3(\lambda)^{\alpha_{2}}\}^2}&&\\ & \:\:\:\:+ \alpha_{2} \tau^{2} \frac{\alpha_{2}\tau^{2} e^{-2 \lambda \tau^{2}}r_3(\lambda)^{2\alpha_{2}-2}} {\{1-r_3(\lambda)^{\alpha_{2}}\}^2},&&\\ {} \delta_3(\lambda) & = - \sum_{k=n_{1}+1}^{n_{1}+n_{2}}\left[\frac{t_{k:n}^{4}e^{-\lambda t_{k:n}^{2}}}{\big(1-e^{-\lambda t_{k:n}^{2}}\big)^{2}} \right], \\ {} \xi_3(\alpha_{2},\lambda) & = \tau^{2} e^{-\lambda \tau^{2}} \frac{\{1-r_3(\lambda)^{\alpha_{2}}\}\big[r_3(\lambda)^{\alpha_{2}}\{\alpha_{2}\ln(r_3(\lambda) + 1\}\big]} {r_3(\lambda)\{1-r_3(\lambda)^{\alpha_{2}}\}^2} &&\\ & \:\:\:\:+ \tau^{2} e^{-\lambda \tau^{2}} \frac{ \alpha_{2}r_3(\lambda)^{2\alpha_{2}}\ln(r_3(\lambda)} {r_3(\lambda)\{1-r_3(\lambda)^{\alpha_{2}}\}^2}, &&\\ {} r_3(\lambda) &= \big(1-e^{-\lambda \tau^{2}}\big). \end{aligned} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pal, A., Samanta, D., Mitra, S., Kundu, D. (2021). A Simple Step-Stress Model for Lehmann Family of Distributions. In: Ghosh, I., Balakrishnan, N., Ng, H.K.T. (eds) Advances in Statistics - Theory and Applications. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-62900-7_16

Download citation

Publish with us

Policies and ethics