Skip to main content

Bayesian Model Assessment and Selection Using Bregman Divergence

  • Chapter
  • First Online:
Advances in Statistics - Theory and Applications

Part of the book series: Emerging Topics in Statistics and Biostatistics ((ETSB))

  • 802 Accesses

Abstract

One of the fundamental steps in statistical modeling is to select the best-fitting model from a set of candidate models for given data. In this paper, based on Bayesian decision theory, we introduce a new model selection criterion, called Bregman divergence criterion (BDC). The proposed criterion improves many existing Bayesian model selection methods such as Bayes factor, intrinsic Bayes factor, pseudo-Bayes factor, etc. In addition, using a Monte Carlo approach, we develop an efficient estimator that significantly eases the computational burden associated with our approach and prove its consistency. The versatility of our methodology is demonstrated on both simulated and real data; to this end, some illustrative examples are provided for linear regression models and longitudinal data models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berger, J. O., & Pericchi, L. R. (1996a). The intrinsic Bayes factor for linear models. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics (vol. 5, pp. 25–44). Oxford: Oxford University Press.

    Google Scholar 

  • Berger, J. O., & Pericchi, L. R. (1996b). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109–122.

    Article  MathSciNet  Google Scholar 

  • Bernardo, J. M., & Smith, A. F. M. (2000). Bayesian theory. Chichester: Wiley.

    MATH  Google Scholar 

  • Bregman, L. M. (1967). The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7, 200–217.

    Article  MathSciNet  Google Scholar 

  • Chen, M. H. (1994). Importance-weighted marginal Bayesian posterior density estimation. Journal of the American Statistical Association, 89, 818–824.

    Article  MathSciNet  Google Scholar 

  • Dawid, A. P. (1984). Statistical theory: The prequential approach. Journal of the Royal Statistical Society, Series B, 147, 278–292.

    Article  MathSciNet  Google Scholar 

  • Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the American Statistical Association, 70, 320–328.

    Article  Google Scholar 

  • Geisser, S., & Eddy, W. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74, 153–160.

    Article  MathSciNet  Google Scholar 

  • Gelfand, A. E., & Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations. Journal of the Royal Statistical Society, Series B, 56, 501–514.

    MathSciNet  MATH  Google Scholar 

  • Gelfand, A. E., & Ghosh, S. K. (1998). Model choice: A minimum posterior predictive loss approach. Biometrika, 85, 1–11.

    Article  MathSciNet  Google Scholar 

  • Gelfand, A. E., Hills, S. E., Racine-Poon, A., & Smith, A. F. M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. Journal of the American Statistical Association, 85, 972–985.

    Article  Google Scholar 

  • Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American statistical Association, 102(477), 359–378.

    Article  MathSciNet  Google Scholar 

  • Goh, G., & Dey, D. K. (2014). Bayesian model diagnostics using functional Bregman divergence. Journal of Multivariate Analysis, 124, 371–383.

    Article  MathSciNet  Google Scholar 

  • Grünwald, P. D., & Dawid, A. P. (2004). Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory. Annals of Statistics, 32, 1367–1433.

    Article  MathSciNet  Google Scholar 

  • Gutierrez-Pena, E., & Walker, S. G. (2001). A Bayesian predictive approach to model selection. Journal of Statistical Planning and Inference, 93, 259–276.

    Article  MathSciNet  Google Scholar 

  • Hennequin, R., David, B., & Badeau, R. (2011). Beta-divergence as a subclass of Bregman divergence. IEEE Signal Processing Letters, 18, 83–86.

    Article  Google Scholar 

  • Ionides, E. L. (2008). Truncated importance sampling. Journal of Computational and Graphical Statistics, 17, 295–311.

    Article  MathSciNet  Google Scholar 

  • Itakura, F., & Saito, S. (1970). A statistical method for estimation of speech spectral density and formant frequencies. Electronics and Communications in Japan, 53, 36–43.

    Google Scholar 

  • Laud, P. W., & Ibrahim, J. G. (1995). Predictive model selection. Journal of the Royal Statistical Society, Series B, 57, 247–262.

    MathSciNet  MATH  Google Scholar 

  • Liu, J., Nordman, D. J., & Meeker, W. Q. (2016). The number of MCMC draws needed to compute Bayesian credible bounds. The American Statistician, 70(3), 275–284.

    Article  MathSciNet  Google Scholar 

  • San Martini, A., & Spezzaferri, F. (1984). A predictive model selection criterion. Journal of the Royal Statistical Society, Series B, 46, 296–303.

    MathSciNet  MATH  Google Scholar 

  • Stone, M. (1974). Cross-validation choice and assessment of statistical predictions (with discussion). Journal of the Royal Statistical Society, Series B, 36, 111–147.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak K. Dey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goh, G., Dey, D.K. (2021). Bayesian Model Assessment and Selection Using Bregman Divergence. In: Ghosh, I., Balakrishnan, N., Ng, H.K.T. (eds) Advances in Statistics - Theory and Applications. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-62900-7_15

Download citation

Publish with us

Policies and ethics