Skip to main content

Theoretical Generalization of the Optical Chirality to Arbitrary Optical Media

  • Chapter
  • First Online:
Chirality, Magnetism and Magnetoelectricity

Part of the book series: Topics in Applied Physics ((TAP,volume 138))

  • 2246 Accesses

Abstract

Chiroptical light-matter interaction is largely boosted in the surroundings of complex-shaped metallic nanostructures. Multiple enhancement schemes have been proposed, from twisted structures, such as spirals or helices, arrays of chiral and even achiral plasmonic nanostructures, to stacked planar metasurfaces. Furthermore, there is a steadily growing trend in using assemblies of high-index dielectric nanostructures, which are actually revealing promising results in terms of the enhancement of chiroptical effects. At any rate, whatever the type of material is, the effects of dispersion and absorption need to be accounted for, with the only exception of the vacuum. These considerations are often neglected, presuming media with an ideal lossless and dispersionless behavior. However, when matter is nanostructured to achieve more complex behaviors, as for the case of metamaterials or plasmonic nanostructures, the effects of dispersion and losses in chiroptical interactions cannot be disregarded at all. Hence, as with the energy, the optical chirality should also be generalized to the case of arbitrary dispersive and lossy optical media. This is the matter of the present chapter; namely, a thorough derivation of the optical chirality, extending it so as to include both dispersive and dissipative effects. For simplicity, as well as for constructiveness, we shall elaborate this theoretical analysis upon the basis of the most complete form of the conservation law for the optical chirality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is worth pointing out that, superchirality (or superchiral light), is well defined only in the case of plane-wave propagation in free space, because it is actually defined with respect to the chirality of circularly polarized light. Notice that, for example, in the case of waveguiding systems, the term of superchirality may be misunderstood, as it would depend on the specific structure [18]. So, in lieu of superchirality, henceforth we shall refer to it simply as the enhanced chirality. In any case, it is noteworthy to mention that there exists a subtle controversy regarding superchiral fields and its apparent unlimited enhancement factor (for further details on this issue see, e.g., [19]).

  2. 2.

    In this regard, it is noteworthy to mention the so-called Abraham-Minkowski dilemma, a long-standing problem concerning with an ambiguity that arises from the real definition of the linear and angular momentum for optical radiation in media [34]. Even though there are a number of influential papers claiming to have solved it (see, e.g., [35, 36]), this challenging problem still remains as a subject of current interest and debate [37, 38].

  3. 3.

    Notice that, strictly speaking, dispersion is necessarily tied to dissipation. This connection is well established by the so-called Kramers-Kronig relations [28], according to which the real and imaginary parts of the material parameters, i.e., the electric permittivity and the magnetic permeability (\(\varepsilon (\omega )=\varepsilon '+i\varepsilon ''\) and \(\mu (\omega )=\mu '+i\mu ''\)), appear to be coupled together. In addition, it has been demonstrated that Kramers-Kronig relations underpin the fundamental principle of causality [45], and hence, initial assumptions regarding dispersion and dissipation have to be carefully considered, otherwise they may lead to misleading outcomes. Still, one can find many cases where is assumed a dispersive medium neglecting the losses.

References

  1. M. Schäferling, Chiral Nanophotonics: Chiral Optical Properties of Plasmonic Systems (Springer, Berlin, 2017)

    Google Scholar 

  2. S. Boriskina, N.I. Zheludev, Singular and Chiral Nanoplasmonics (CRC Press, Boca Raton, FL, 2014)

    Google Scholar 

  3. M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures. Phys. Rev. X 2, 031010 (2012). https://doi.org/10.1103/PhysRevX.2.031010

    Article  Google Scholar 

  4. N. Meinzer, E. Hendry, W.L. Barnes, Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures. Phys. Rev. B 88, 041407 (2013). https://doi.org/10.1103/PhysRevB.88.041407

    Article  ADS  Google Scholar 

  5. V.K. Valev, J.J. Baumberg, C. Sibilia, T. Verbiest, Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook. Adv. Mater. 25, 2517 (2013). https://doi.org/10.1002/adma.201205178

    Article  Google Scholar 

  6. M.L. Nesterov, X. Yin, M. Schäferling, H. Giessen, T. Weiss, The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy. ACS Photon. 3, 578 (2016). https://doi.org/10.1021/acsphotonics.5b00637

    Article  Google Scholar 

  7. J.T. Collins, C. Kuppe, D.C. Hooper, C. Sibilia, M. Centini, V.K. Valev, Chirality and chiroptical effects in metal nanostructures: Fundamentals and current trends. Adv. Opt. Mater. 5, 1700182 (2017). https://doi.org/10.1002/adom.201700182

    Article  Google Scholar 

  8. Y. Luo, C. Chi, M. Jiang, R. Li, S. Zu, Y. Li, Z. Fang, Plasmonic chiral nanostructures: Chiroptical effects and applications. Adv. Opt. Mater. 5, 1700040 (2017). https://doi.org/10.1002/adom.201700040

    Article  Google Scholar 

  9. M. Hentschel, M. Schäferling, X. Duan, H. Giessen, N. Liu, Chiral Plasmonics. Sci. Adv. 3, e1602735 (2017). https://doi.org/10.1126/sciadv.1602735

    Article  ADS  Google Scholar 

  10. A. García-Etxarri, J.A. Dionne, Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Phys. Rev. B 87, 235409 (2013). https://doi.org/10.1103/PhysRevB.87.235409

    Article  ADS  Google Scholar 

  11. E. Mohammadi, K.L. Tsakmakidis, A.N. Askarpour, P. Dehkhoda, A. Tavakoli, H. Altug, Nanophotonic platforms for enhanced chiral sensing. ACS Photonics 5, 2669 (2018). https://doi.org/10.1021/acsphotonics.8b00270

    Article  Google Scholar 

  12. G. Pellegrini, M. Finazzi, M. Celebrano, L. Duò, P. Biagioni, Chiral surface waves for enhanced circular dichroism. Phys. Rev. B 95, 241402 (2017). https://doi.org/10.1103/PhysRevB.95.241402

    Article  ADS  Google Scholar 

  13. M.L. Solomon, J. Hu, M. Lawrence, A. García-Etxarri, J.A. Dionne, Enantiospecific optical enhancement of chiral sensing and separation with dielectric metasurfaces. ACS Photonics 6, 43 (2019). https://doi.org/10.1021/acsphotonics.8b01365

    Article  Google Scholar 

  14. F. Graf, J. Feis, X. Garcia-Santiago, M. Wegener, C. Rockstuhl, I. Fernandez-Corbaton, Achiral, helicity preserving, and resonant structures for enhanced sensing of chiral molecules. ACS Photonics 6, 482 (2019). https://doi.org/10.1021/acsphotonics.8b01454

    Article  Google Scholar 

  15. E. Mohammadi, A. Tavakoli, P. Dehkhoda, Y. Jahani, K.L. Tsakmakidis, A. Tittl, H. Altug, Accessible superchiral near-fields driven by tailored electric and magnetic resonances in all-dielectric nanostructures. ACS Photonics 6, 1939 (2019). https://doi.org/10.1021/acsphotonics.8b01767

    Article  Google Scholar 

  16. X. Zhao, B.M. Reinhard, Switchable chiroptical hot-spots in silicon nanodisk dimers. ACS Photonics 6, 1981 (2019). https://doi.org/10.1021/acsphotonics.9b00388

    Article  Google Scholar 

  17. Y. Tang, A.E. Cohen, Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333 (2011). https://doi.org/10.1126/science.1202817

    Article  ADS  Google Scholar 

  18. J.E. Vázquez-Lozano, A. Martínez, Toward chiral sensing and spectroscopy enabled by all-dielectric integrated photonic waveguides. Laser Photonics Rev. 14, 1900422 (2020). https://doi.org/10.1002/lpor.201900422

  19. J.S. Choi, M. Cho, Limitations of a superchiral field. Phys. Rev. A 86, 063834 (2012). https://doi.org/10.1103/PhysRevA.86.063834

    Article  ADS  Google Scholar 

  20. E. Hendry, T. Carpy, J. Johnston, M. Popland, R.V. Mikhaylovskiy, A.J. Lapthorn, S.M. Kelly, L.D. Barron, N. Gadegaard, M. Kadodwala, Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783 (2010). https://doi.org/10.1038/nnano.2010.209

    Article  ADS  Google Scholar 

  21. A. Kuzyk, R. Schreiber, H. Zhang, A.O. Govorov, T. Liedl, N. Liu, Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862 (2014). https://doi.org/10.1038/nmat4031

    Article  ADS  Google Scholar 

  22. L.D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  23. T. Brixner, F.J. García de Abajo, J. Schneider, W. Pfeiffer, Nanoscopic ultrafast space-time-resolved spectroscopy. Phys. Rev. Lett. 95, 093901 (2005). https://doi.org/10.1103/PhysRevLett.95.093901

    Article  ADS  Google Scholar 

  24. N. Yang, Y. Tang, A.E. Cohen, Spectroscopy in sculpted fields. Nano Today 4, 269 (2009). https://doi.org/10.1016/j.nantod.2009.05.001

    Article  Google Scholar 

  25. C. Kramer, M. Schäferling, T. Weiss, H. Giessen, T. Brixner, Analytic optimization of near-field optical chirality enhancement. ACS Photonics 4, 396 (2017). https://doi.org/10.1021/acsphotonics.6b00887

    Article  Google Scholar 

  26. L.E. Barr, S.A.R. Horsley, I.R. Hooper, J.K. Eager, C.P. Gallagher, S.M. Hornett, A.P. Hibbins, E. Hendry, Investigating the nature of chiral near-field interactions. Phys. Rev. B 97, 155418 (2018). https://doi.org/10.1103/PhysRevB.97.155418

    Article  ADS  Google Scholar 

  27. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  28. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    Google Scholar 

  29. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  30. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon, New York, 1984)

    Google Scholar 

  31. Y. Tang, A.E. Cohen, Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010). https://doi.org/10.1103/PhysRevLett.104.163901

    Article  ADS  Google Scholar 

  32. K.Y. Bliokh, F. Nori, Characterizing optical chirality. Phys. Rev. A 83, 021803 (2011). https://doi.org/10.1103/PhysRevA.83.021803

    Article  ADS  Google Scholar 

  33. M.M. Coles, D.L. Andrews, Chirality and angular momentum in optical radiation. Phys. Rev. A 85, 063810 (2012). https://doi.org/10.1103/PhysRevA.85.063810

    Article  ADS  Google Scholar 

  34. S.M. Barnett, R. Loudon, The enigma of optical momentum in a medium. Phil. Trans. R. Soc. A 368, 927 (2010). https://doi.org/10.1098/rsta.2009.0207

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. D.F. Nelson, Momentum, pseudomomentum, and wave momentum: Toward resolving the Minkowski-Abraham controversy. Phys. Rev. A 44, 3985 (1991). https://doi.org/10.1103/PhysRevA.44.3985

    Article  ADS  Google Scholar 

  36. S.M. Barnett, Resolution of the Abraham-Minkowski dilemma. Phys. Rev. Lett. 104, 070401 (2010). https://doi.org/10.1103/PhysRevLett.104.070401

    Article  ADS  Google Scholar 

  37. M.G. Silveirinha, Reexamination of the Abraham-Minkowski dilemma. Phys. Rev. A 96, 033831 (2017). https://doi.org/10.1103/PhysRevA.96.033831

    Article  ADS  MathSciNet  Google Scholar 

  38. K.Y. Bliokh, A.Y. Bekshaev, F. Nori, Optical momentum and angular momentum in complex media: from the Abraham-Minkowski debate to unusual properties of surface plasmon-polaritons. New J. Phys. 19, 123014 (2017). https://doi.org/10.1088/1367-2630/aa8913

    Article  ADS  Google Scholar 

  39. T.G. Philbin, Electromagnetic energy momentum in dispersive media. Phys. Rev. A 83, 013823 (2011). https://doi.org/10.1103/PhysRevA.83.013823; Erratum, Phys. Rev. A 85, 059902 (2012) https://doi.org/10.1103/PhysRevA.85.059902

  40. T.G. Philbin, O. Allanson, Optical angular momentum in dispersive media. Phys. Rev. A 86, 055802 (2012). https://doi.org/10.1103/PhysRevA.86.055802

    Article  ADS  Google Scholar 

  41. K.Y. Bliokh, A.Y. Bekshaev, F. Nori, Optical momentum, spin, and angular momentum in dispersive media. Phys. Rev. Lett. 119, 073901 (2017). https://doi.org/10.1103/PhysRevLett.119.073901

    Article  ADS  Google Scholar 

  42. F. Alpeggiani, K.Y. Bliokh, F. Nori, L. Kuipers, Electromagnetic helicity in complex media. Phys. Rev. Lett. 120, 243605 (2018). https://doi.org/10.1103/PhysRevLett.120.243605

    Article  ADS  Google Scholar 

  43. I. Proskurin, A.S. Ovchinnikov, P. Nosov, J. Kishine, Optical chirality in gyrotropic media: symmetry approach. New J. Phys. 19, 063021 (2017). https://doi.org/10.1088/1367-2630/aa6acd

    Article  ADS  Google Scholar 

  44. T.G. Philbin, Lipkin’s conservation law, Noether’s theorem, and the relation to optical helicity. Phys. Rev. A 87, 043843 (2013). https://doi.org/10.1103/PhysRevA.87.043843

    Article  ADS  Google Scholar 

  45. M.V. Gorkunov, V.E. Dmitrienko, A.A. Ezhov, V.V. Artemov, O.Y. Rogov, Implications of the causality principle for ultra chiral metamaterials. Sci. Rep. 5, 9273 (2015). https://doi.org/10.1038/srep09273

    Article  ADS  Google Scholar 

  46. J.E. Vázquez-Lozano, A. Martínez, Optical chirality in dispersive and lossy media. Phys. Rev. Lett. 121, 043901 (2018). https://doi.org/10.1103/PhysRevLett.121.043901

    Article  ADS  Google Scholar 

  47. D.M. Lipkin, Existence of a new conservation law in electromagnetic theory. J. Math. Phys. 5, 696 (1964). https://doi.org/10.1063/1.1704165

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. J.E. Vázquez-Lozano, A. Martínez, Optics in 2018: Generalizing optical chirality to an arbitrary medium. Opt. Photon. News 29, 39 (2018). https://www.osa-opn.org/home/articles/volume_29/december_2018/extras/generalizing_optical_chirality_to_an_arbitrary_med/

  49. E. Hecht, Optics, 4th edn. (Pearson Education, Harlow, 2013)

    Google Scholar 

  50. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 2007)

    Google Scholar 

  51. G. Nienhuis, Conservation laws and symmetry transformations of the electromagnetic field with sources. Phys. Rev. A 93, 023840 (2016). https://doi.org/10.1103/PhysRevA.93.023840

    Article  ADS  Google Scholar 

  52. I. Fernandez-Corbaton, C. Rockstuhl, Unified theory to describe and engineer conservation laws in light-matter interactions. Phys. Rev. A 95, 053829 (2017). https://doi.org/10.1103/PhysRevA.95.053829

    Article  ADS  Google Scholar 

  53. J.H. Poynting, On the transfer of energy in the electromagnetic field. Phil. Trans. R. Soc. London 175, 343 (1884). https://doi.org/10.1098/rstl.1884.0016

    Article  ADS  MATH  Google Scholar 

  54. R. Loudon, The propagation of electromagnetic energy through an absorbing dielectric. J. Phys. A: Gen. Phys. 3, 233 (1970). https://doi.org/10.1088/0305-4470/3/3/008

    Article  ADS  Google Scholar 

  55. R. Ruppin, Electromagnetic energy density in a dispersive and absorptive material. Phys. Lett. A 299, 309 (2002). https://doi.org/10.1016/S0375-9601(01)00838-6

    Article  ADS  Google Scholar 

  56. T.J. Cui, J.A. Kong, Time-domain electromagnetic energy in a frequency-dispersive left-handed medium. Phys. Rev. B 70, 205106 (2004). https://doi.org/10.1103/PhysRevB.70.205106

    Article  ADS  Google Scholar 

  57. S.A. Tretyakov, Electromagnetic field energy density in artificial microwave materials with strong dispersion and loss. Phys. Lett. A 343, 231 (2005). https://doi.org/10.1016/j.physleta.2005.06.023

    Article  ADS  Google Scholar 

  58. A.D. Boardman, K. Marinov, Electromagnetic energy in a dispersive metamaterial. Phys. Rev. B 73, 165110 (2006). https://doi.org/10.1103/PhysRevB.73.165110

    Article  ADS  Google Scholar 

  59. P.-G. Luan, Power loss and electromagnetic energy density in a dispersive metamaterial medium. Phys. Rev. E 80, 046601 (2009). https://doi.org/10.1103/PhysRevE.80.046601

    Article  ADS  Google Scholar 

  60. A. Raman, S. Fan, Photonic band structure of dispersive metamaterials formulated as a Hermitian eigenvalue problem. Phys. Rev. Lett. 104, 087401 (2010). https://doi.org/10.1103/PhysRevLett.104.087401

    Article  ADS  Google Scholar 

  61. W. Shin, A. Raman, S. Fan, Instantaneous electric energy and electric power dissipation in dispersive media. J. Opt. Soc. Am. B 29, 1048 (2012). https://doi.org/10.1364/JOSAB.29.001048

    Article  ADS  Google Scholar 

  62. F.S.S. Rosa, D.A.R. Dalvit, P.W. Milonni, Electromagnetic energy, absorption, and Casimir forces: Uniform dielectric media in thermal equilibrium. Phys. Rev. A 81, 033812 (2010). https://doi.org/10.1103/PhysRevA.81.033812

    Article  ADS  Google Scholar 

  63. K.J. Webb and Shivanand, Electromagnetic field energy in dispersive materials. J. Opt. Soc. Am. B 27, 1215 (2010) https://doi.org/10.1364/JOSAB.27.001215

  64. F.D. Nunes, T.C. Vasconcelos, M. Bezerra, J. Weiner, Electromagnetic energy density in dispersive and dissipative media. J. Opt. Soc. Am. B 28, 1544 (2011). https://doi.org/10.1364/JOSAB.28.001544

    Article  ADS  Google Scholar 

  65. L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960)

    Google Scholar 

  66. K.E. Oughstun, S. Shen, Velocity of energy transport for a time-harmonic field in a multiple-resonance Lorentz medium. J. Opt. Soc. Am. B 5, 2395 (1988). https://doi.org/10.1364/JOSAB.5.002395

    Article  ADS  Google Scholar 

  67. F.D. Nunes, B.-H.V. Borges, J. Weiner, Analysis of dispersive and dissipative media with optical resonances. Opt. Express 20, 15679 (2012). https://doi.org/10.1364/OE.20.015679

    Article  ADS  Google Scholar 

  68. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000). https://doi.org/10.1103/PhysRevLett.84.4184

    Article  ADS  Google Scholar 

  69. C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, A.V. Zayats, Low-Loss Multilayered Metamaterial Exhibiting a Negative Index of Refraction at Visible Wavelengths. Phys. Rev. Lett. 106, 067402 (2011). https://doi.org/10.1103/PhysRevLett.106.067402

    Article  ADS  Google Scholar 

  70. S. Yoo, M. Cho, Q.-H. Park, Globally enhanced chiral field generation by negative-index metamaterials. Phys. Rev. B 89, 161405 (2014). https://doi.org/10.1103/PhysRevB.89.161405

    Article  ADS  Google Scholar 

  71. S. Yoo, Q.-H. Park, Chiral light-matter interaction in optical resonators. Phys. Rev. Lett. 114, 203003 (2015). https://doi.org/10.1103/PhysRevLett.114.203003

    Article  ADS  Google Scholar 

  72. A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998). https://doi.org/10.1364/AO.37.005271

    Article  ADS  Google Scholar 

  73. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985)

    Google Scholar 

  74. H.S. Sehmi, W. Langbein, E.A. Muljarov, Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper. Phys. Rev. B 95, 115444 (2017). https://doi.org/10.1103/PhysRevB.95.115444

    Article  ADS  Google Scholar 

  75. W.I. Fushchich, A.G. Nikitin, Symmetries of Maxwell’s Equations (Mathematics and its Applications (Springer, Amsterdam, 1987)

    Google Scholar 

  76. E. Noether, Gott. Nachr. 1918, 235 (1918) [Transp. Theory Stat. Phys. 1, 186 (1971) https://doi.org/10.1080/00411457108231446]

  77. R.P. Cameron, J.B. Götte, S.M. Barnett, A.M. Yao, Chirality and the angular momentum of light. Phil. Trans. R. Soc. A 375, 20150433 (2017). https://doi.org/10.1098/rsta.2015.0433

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. W.-K. Tung, Group Theory in Physics (World Scientific, Singapore, 1985)

    Google Scholar 

  79. S. Weinberg, 1st ed., vol. 1 The Quantum Theory of Fields (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  80. L.V. Poulikakos, P. Gutsche, K.M. McPeak, S. Burger, J. Niegemann, C. Hafner, D.J. Norris, Optical chirality flux as a useful far-field probe of chiral near fields. ACS Photonics 3, 1619 (2016). https://doi.org/10.1021/acsphotonics.6b00201

    Article  Google Scholar 

  81. R.W. Boyd, D.J. Gauthier, Controlling the velocity of light pulses. Science 326, 1074 (2009). https://doi.org/10.1126/science.1170885

    Article  ADS  Google Scholar 

  82. V. Gerasik, M. Stastna, Complex group velocity and energy transport in absorbing media. Phys. Rev. E 81, 056602 (2010). https://doi.org/10.1103/PhysRevE.81.056602

    Article  ADS  Google Scholar 

  83. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000). https://doi.org/10.1103/PhysRevLett.85.3966

    Article  ADS  Google Scholar 

  84. H.J. Lezec, J.A. Dionne, H.A. Atwater, Negative refraction at visible frequencies. Science 316, 430 (2007). https://doi.org/10.1126/science.1139266

    Article  ADS  Google Scholar 

  85. N. Engheta, Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials. Science 317, 1698 (2007). https://doi.org/10.1126/science.1133268

    Article  ADS  Google Scholar 

  86. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature (London) 455, 376 (2008) https://doi.org/10.1038/nature07247

  87. C.-G. Huang, Y.-Z. Zhang, Poynting vector, energy density, and energy velocity in an anomalous dispersion medium. Phys. Rev. A 65, 015802 (2001). https://doi.org/10.1103/PhysRevA.65.015802

    Article  ADS  Google Scholar 

  88. G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892 (2006). https://doi.org/10.1126/science.1126021

    Article  ADS  Google Scholar 

  89. K.Y. Bliokh, F. Nori, Transverse spin of a surface polariton. Phys. Rev. A 85, 061801 (2012). https://doi.org/10.1103/PhysRevA.85.061801

    Article  ADS  Google Scholar 

  90. P. Gutsche, L.V. Poulikakos, M. Hammerschmidt, S. Burger, F. Schmidt, Time-harmonic optical chirality in inhomogeneous space. Proc. SPIE 9756, 97560X (2016). https://doi.org/10.1117/12.2209551

    Article  ADS  Google Scholar 

  91. F. Crimin, N. Mackinnon, J.B. Götte, S.M. Barnett, Optical helicity and chirality: Conservation and sources. Appl. Sci. 9, 828 (2019). https://doi.org/10.3390/app9050828

    Article  Google Scholar 

  92. N. Mackinnon, On the differences between helicity and chirality. J. Opt. 21, 125402 (2019). https://doi.org/10.1088/2040-8986/ab4db9

    Article  ADS  Google Scholar 

  93. L.V. Poulikakos, J.A. Dionne, A. García-Etxarri, Optical helicity and optical chirality in free space and in the presence of matter. Symmetry 11, 1113 (2019). https://doi.org/10.3390/sym11091113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Enrique Vázquez-Lozano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vázquez-Lozano, J.E., Martínez, A. (2021). Theoretical Generalization of the Optical Chirality to Arbitrary Optical Media. In: Kamenetskii, E. (eds) Chirality, Magnetism and Magnetoelectricity. Topics in Applied Physics, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-030-62844-4_13

Download citation

Publish with us

Policies and ethics