Skip to main content

Realization of Artificial Chirality in Micro-/Nano-Scale Three-Dimensional Plasmonic Structures

  • Chapter
  • First Online:
Chirality, Magnetism and Magnetoelectricity

Part of the book series: Topics in Applied Physics ((TAP,volume 138))

Abstract

Recent advancements in nano- and micro-fabrication technology have allowed the realization of artificial structured materials with strong electromagnetic chirality, far-exceeding natural chiral materials. This chapter categorizes the fabrication methods for realizing chiral structures based on the feature sizes, which closely relates to the operating wavelengths. Conventional top-down and bottom-up approaches are discussed along with their respective advantages and disadvantages, and the recently developed unconventional fabrication methods are also provided. Additionally, the chiral responses of the fabricated structures are briefly introduced. This chapter will contribute to the understanding of possible chiral structure designs and help to develop further fabrication methods for improving chiroptical activity.

Y.Yang and Y. Kim have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Mun, M. Kim, Y. Yang, T. Badloe, J. Ni, Y. Chen, C-W. Qiu, J. Rho, Light Sci. Appl. 9, 139 (2020)

    Google Scholar 

  2. P. Bharadwaj, B. Deutsch, L. Novotny, Adv. Opt. Photonics 1, 438 (2009)

    Google Scholar 

  3. L. Novotny, Phys. Rev. Lett. 98, 266802 (2007)

    Google Scholar 

  4. A. Campion, P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998)

    Google Scholar 

  5. D. Jaque, L. Martínez Maestro, B. Del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martín Rodríguez, and J. García Solé, Nanoscale 6, 9494 (2014).

    Google Scholar 

  6. L. Novotny, N. Van Hulst, Nat. Photonics 5, 83 (2011)

    Google Scholar 

  7. X. Fan, W. Zheng, D.J. Singh, Light Sci. Appl. 3, e179 (2014)

    Google Scholar 

  8. J. Mun, S. So, J. Rho, Phys. Rev. Appl. 10, 1 (2019)

    Google Scholar 

  9. J. Mun, J. Rho, Opt. Lett. 43, 2856 (2018)

    Google Scholar 

  10. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, M. Wegener, Science 325, 1513 (2009)

    Google Scholar 

  11. A. Phys, J.K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, Opt. Express 101109, 19936 (2017)

    Google Scholar 

  12. J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, M. Wegener, Adv. Opt. Mater. 3, 1411 (2015)

    Google Scholar 

  13. Z. Wang, F. Cheng, T. Winsor, Y. Liu, Nanotechnology 27, 412001 (2016)

    Google Scholar 

  14. A. Selimis, V. Mironov, M. Farsari, Microelectron. Eng. 132, 83 (2015)

    Google Scholar 

  15. Z. Liu, H. Du, J. Li, L. Lu, Z.Y. Li, N.X. Fang, Sci. Adv. 4, 1 (2018)

    Google Scholar 

  16. A. Rafsanjani, K. Bertoldi, Phys. Rev. Lett. 118, 084301 (2017)

    Google Scholar 

  17. Z. Chen, G. Huang, I. Trase, X. Han, Y. Mei, Phys. Rev. Appl. 5, 017001 (2016)

    Google Scholar 

  18. E.A. Peraza-hernandez, D.J. Hartl, R.J.M. Jr, D.C. Lagoudas, Computer-aid Design 78, 93 (2014)

    Google Scholar 

  19. L. Xu, T.C. Shyu, N.A. Kotov, ACS Nano 11, 7587 (2017)

    Google Scholar 

  20. S. Xu, Z. Yan, K. Jang, W. Huang, H. Fu, J. Kim, Z. Wei, M. Flavin, J. Mccracken, R. Wang, A. Badea, Y. Liu, D. Xiao, G. Zhou, J. Lee, H.U. Chung, H. Cheng, W. Ren, A. Banks, X. Li, U. Paik, R.G. Nuzzo, Y. Huang, Science 347, 154 (2015)

    Google Scholar 

  21. S. Zhang, J. Zhou, Y.S. Park, J. Rho, R. Singh, S. Nam, A.K. Azad, H.T. Chen, X. Yin, A.J. Taylor, X. Zhang, Nat. Commun. 3, 942 (2012)

    Google Scholar 

  22. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, X. Zhang, Phys. Rev. Lett. 102, 23901 (2009)

    Google Scholar 

  23. G. Yoon, I. Kim, S. So, J. Mun, M. Kim, J. Rho, Sci. Rep. 7, 6668 (2017)

    Google Scholar 

  24. Y. Zhao, M.A. Belkin, A. Alù, Nat. Commun. 3, 870 (2012)

    Google Scholar 

  25. M. Hentschel, M. Schäferling, T. Weiss, N. Liu, H. Giessen, Nano Lett. 12, 2542 (2012)

    Google Scholar 

  26. A.G. Mark, J.G. Gibbs, T.C. Lee, P. Fischer, Nat. Mater. 12, 802 (2013)

    Google Scholar 

  27. M. Hentschel, M. Schäferling, B. Metzger, H. Giessen, Nano Lett. 13, 600 (2013)

    Google Scholar 

  28. Y. Yang, M. Kim, J. Mun, J. Rho, Adv. Theory Simul. 3, 1900229 (2020)

    Google Scholar 

  29. H.-H. Jeong, A.G. Mark, P. Fischer, Chem. Commun. 52, 12179 (2016)

    Google Scholar 

  30. J.M. Caridad, D. McCloskey, F. Rossella, V. Bellani, J. F. Donegan, V. Krstić, ACS Photonics 2, 675 (2015)

    Google Scholar 

  31. M. Kim, J. Rho, Opt. Express 26, 14051 (2018)

    Google Scholar 

  32. B. Frank, X. Yin, M. Schäferling, J. Zhao, S.M. Hein, P.V. Braun, H. Giessen, ACS Nano 7, 6321 (2013)

    Google Scholar 

  33. H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D.S. Sutherland, M. Zäch, B. Kasemo, Adv. Mater. 19, 4297 (2007)

    Google Scholar 

  34. Y. Cui, L. Kang, S. Lan, S. Rodrigues, W. Cai, Nano Lett. 14, 1021 (2014)

    Google Scholar 

  35. Y.Y. Lee, R.M. Kim, S.W. Im, M. Balamurugan, K.T. Nam, Nanoscale 12, 58 (2020)

    Google Scholar 

  36. A spin-encoded all-dielectric metahologram for visible light. Laser Photon. Rev. 13, 1900065 (2019)

    Google Scholar 

  37. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nature Nanotechnol. 15, 948–955 (2020)

    Google Scholar 

  38. Planar achiral metasurfaces-induced anomalous chiroptical effect of optical spin isolaton. ACS Appl. Mater. Inter. 12, 43 (2020)

    Google Scholar 

  39. Multipole decomposition for interactions between structured optical fields and meta-atoms. Optic. Express 28, 36756–36770 (2020)

    Google Scholar 

  40. H.-E. Lee, H.-Y. Ahn, J. Lee, K.T. Nam, ChemNanoMat 3, 685 (2017)

    Google Scholar 

  41. W. Ma, L. Xu, A.F. De Moura, X. Wu, H. Kuang, C. Xu, N.A. Kotov, Chem. Rev. 117, 8041 (2017)

    Google Scholar 

  42. A. Ben-Moshe, S.G. Wolf, M.B. Sadan, L. Houben, Z. Fan, A.O. Govorov, G. Markovich, Nat. Commun. 5, 4302 (2014)

    Google Scholar 

  43. H.-E. Lee, H.-Y. Ahn, J. Mun, Y.Y. Lee, M. Kim, N.H. Cho, K. Chang, W.S. Kim, J. Rho, K.T. Nam, Nature 556, 360 (2018)

    Google Scholar 

  44. H.-E. Lee, R.M. Kim, H.-Y. Ahn, Y.Y. Lee, G.H. Byun, S.W. Im, J. Mun, J. Rho, K.T. Nam, Nat. Commun. 11, 263 (2020)

    Google Scholar 

  45. L. Ohnoutek, N.H. Cho, A.W.A. Murphy, H. Kim, D.M. Rasadean, G.D. PantoÈ™, K.T. Nam, V.K. Valev, Nano Lett. 8, 5792 (2020)

    Google Scholar 

  46. N.H. Cho, H. Lee, H. Ahn, Y.Y. Lee, S.W. Im, H. Kim, K.T. Nam, Part. Part. Syst. Charact. 36, 1900062 (2019)

    Google Scholar 

  47. J. Karst, N.H. Cho, H. Kim, H.-E. Lee, K.T. Nam, H. Giessen, M. Hentschel, ACS Nano 13, 8659 (2019)

    Google Scholar 

  48. H.-Y. Ahn, S. Yoo, N.H. Cho, R.M. Kim, H. Kim, J.-H. Huh, S. Lee, K.T. Nam, Acc. Chem. Res. 52, 2768 (2019)

    Google Scholar 

  49. S.W. Im, H.Y. Ahn, R.M. Kim, N.H. Cho, H. Kim, Y.C. Lim, H.E. Lee, K.T. Nam, Adv. Mater. 31, 1905758 (2019)

    Google Scholar 

  50. Y.Y. Lee, N.H. Cho, S.W. Im, H. Lee, H. Ahn, K.T. Nam, Chem. Nano Mat. 6, 362 (2020)

    Google Scholar 

  51. N.H. Cho, G.H. Byun, Y.-C. Lim, S.W. Im, H. Kim, H.-E. Lee, H.-Y. Ahn, K.T. Nam, ACS Nano 14, 3595 (2020)

    Google Scholar 

  52. H. Kim, S.W. Im, N.H. Cho, D. Hye Seo, R. M. Kim, Y. Lim, H. Lee, H. Ahn, K.T. Nam, Angew. Chemie. 59, 12976 (2020)

    Google Scholar 

  53. J. Mun, J. Rho, Nanophotonics 8, 941 (2019)

    Google Scholar 

  54. L. Wang, K.G. Gutierrez-Cuevas, A. Urbas, Q. Li, Adv. Opt. Mater. 4, 247 (2016)

    Google Scholar 

  55. A. Guerrero-Martínez, B. Auguié, J.L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M.M. Cid, L.M. Liz-Marzán, Angew. Chemie Int. Ed. 50, 5499 (2011)

    Google Scholar 

  56. M. Hentschel, M. Schäferling, X. Duan, H. Giessen, N. Liu, Sci. Adv. 3, e1602735 (2017)

    Google Scholar 

  57. J. George, K.G. Thomas, J. Am. Chem. Soc. 132, 2502 (2010)

    Google Scholar 

  58. C. Song, M.G. Blaber, G. Zhao, P. Zhang, H.C. Fry, G.C. Schatz, N.L. Rosi, Nano Lett. 13, 3256 (2013)

    Google Scholar 

  59. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F.C. Simmel, A.O. Govorov, T. Liedl, Nature 483, 311 (2012)

    Google Scholar 

  60. W. Ma, H. Kuang, L. Wang, L. Xu, W.-S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, Sci. Rep. 3, 1934 (2013)

    Google Scholar 

  61. N.C. Seeman, J. Theor. Biol. 99, 237 (1982)

    Google Scholar 

  62. P.W.K. Rothemund, Nature 440, 297 (2006)

    Google Scholar 

  63. A.P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez, P.G. Schultz, Nature 382, 609 (1996)

    Google Scholar 

  64. K.L. Wustholz, A.-I. Henry, J.M. McMahon, R.G. Freeman, N. Valley, M.E. Piotti, M.J. Natan, G.C. Schatz, R.P. Van Duyne, J. Am. Chem. Soc. 132, 10903 (2010)

    Google Scholar 

  65. C.J. Loweth, W.B. Caldwell, X. Peng, A.P. Alivisatos, P.G. Schultz, Angew. Chemie Int. Ed. 38, 1808 (1999)

    Google Scholar 

  66. A. Fu, C.M. Micheel, J. Cha, H. Chang, H. Yang, A.P. Alivisatos, J. Am. Chem. Soc. 126, 10832 (2004)

    Google Scholar 

  67. A.J. Mastroianni, S.A. Claridge, A.P. Alivisatos, J. Am. Chem. Soc. 131, 8455 (2009)

    Google Scholar 

  68. W. Chen, A. Bian, A. Agarwal, L. Liu, H. Shen, L. Wang, C. Xu, N.A. Kotov, Nano Lett. 9, 2153 (2009)

    Google Scholar 

  69. Z. Deng, Y. Tian, S.-H. Lee, A.E. Ribbe, C. Mao, Angew. Chemie Int. Ed. 44, 3582 (2005)

    Google Scholar 

  70. S. Beyer, P. Nickels, F.C. Simmel, Nano Lett. 5, 719 (2005)

    Google Scholar 

  71. X. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F.J. García de Abajo, N. Liu, B. Ding, Nano Lett. 13, 2128 (2013)

    Google Scholar 

  72. A. Kuzyk, R. Schreiber, H. Zhang, A.O. Govorov, T. Liedl, N. Liu, Nat. Mater. 13, 862 (2014)

    Google Scholar 

  73. X. Lan, X. Lu, C. Shen, Y. Ke, W. Ni, Q. Wang, J. Am. Chem. Soc. 137, 457 (2014)

    Google Scholar 

  74. X. Lan, T. Liu, Z. Wang, A.O. Govorov, H. Yan, Y. Liu, J. Am. Chem. Soc. 140, 11763 (2018)

    Google Scholar 

  75. X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, B. Ding, J. Am. Chem. Soc. 134, 146 (2012)

    Google Scholar 

  76. X. Shen, P. Zhan, A. Kuzyk, Q. Liu, A. Asenjo-Garcia, H. Zhang, F.J. García de Abajo, A. Govorov, B. Ding, N. Liu, Nanoscale 6, 2077 (2014)

    Google Scholar 

  77. C. Zhou, X. Duan, N. Liu, Nat. Commun. 6, 8102 (2015)

    Google Scholar 

  78. M. Stefik, S. Guldin, S. Vignolini, U. Wiesner, U. Steiner, Chem. Soc. Rev. 44, 5076 (2015)

    Google Scholar 

  79. C.A. Tyler, J. Qin, F.S. Bates, D.C. Morse, Macromolecules 40, 4654 (2007)

    Google Scholar 

  80. S. Vignolini, N. A. Yufa, P. S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J. J. Baumberg, U. Steiner, Adv. Mater. 24, OP23 (2012)

    Google Scholar 

  81. P. Docampo, M. Stefik, S. Guldin, R. Gunning, N.A. Yufa, N. Cai, P. Wang, U. Steiner, U. Wiesner, H.J. Snaith, Adv. Energy Mater. 2, 676 (2012)

    Google Scholar 

  82. S.J. Go, D.-E. Lee, D.H. Lee, B.D. Chin, J. Korean Phys. Soc. 68, 257 (2016)

    Google Scholar 

  83. I. Jung, M. Kim, M. Kwak, G. Kim, M. Jang, S.M. Kim, D.J. Park, S. Park, Nat. Commun. 9, 1010 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Foundation (NRF) grant (NRF-2019R1A2C3003129) funded by the Ministry of Science and ICT, Republic of Korea. Y.Y. and Y.K. acknowledge the fellowships from the Hyundai Motor Chung Mong-Koo Foundation. S.S., M.K. and I.K. acknowledge the NRF Global Ph.D. fellowships (NRF-2017H1A2A1043322, NRF-2017H1A2A1043204, NRF-2016H1A2A1906519), respectively, funded by the Ministry of Education, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

J. R., Y. Y. and Y. K. conceived and initiated the project. Y. Y., Y. K. and J. M. mainly wrote the manuscript. J. G, S. S., M. K., H. J., I. K. and T. B. are partially involved in writing the manuscript. Y. Y and J. G organized the top-down fabrication parts with support from J. G, S. S., Y. K., H. J., I. K., Y. Y. and M. K. organized bottom-up fabrication parts with support from J. M.. All authors read and approved the final manuscript. J. R. guided the entire project.

Corresponding author

Correspondence to Junsuk Rho .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Y. et al. (2021). Realization of Artificial Chirality in Micro-/Nano-Scale Three-Dimensional Plasmonic Structures. In: Kamenetskii, E. (eds) Chirality, Magnetism and Magnetoelectricity. Topics in Applied Physics, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-030-62844-4_10

Download citation

Publish with us

Policies and ethics