Skip to main content

Behavior of a Polymer Electrolyte Fuel Cell from a Statistical Point of View Based on Data Analysis

  • Conference paper
  • First Online:
Information and Communication Technologies (TICEC 2020)

Abstract

Alternative energy sources appear as a suitable solution as the energy demand is growing. Fuel cells are one of the promising devices to face the mentioned energy demand in a green manner. Predicting the behavior of a Polymer Electrolyte Fuel Cell (PEFC) in certain conditions is a useful step to enhance its mechanical properties and understand the impact of the diffusion media and the impact of the inlet reactant gases into the cell. This study aims, based on experimental data, to propose empirical correlations that describe and predict the current density in the function of other parameters measured in a Fuel Cell (FC) such as power density, voltage, anode flow and cathode flow. The approach presented in this study is directed to apply a statistical analysis related to Principal Component Analysis (PCA) to reduce the dimensionality of the involved variable. This study shows the feasibility of describing the behavior of a PEFC with simplified variables. For the proposed correlations, after an adequate selection and treatment of the data, the adjusted R2 is around 0.99 with confidence bounds of 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akinwande, O., Dikko, H., Agboola, S.: Variance inflation factor: as a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 5, 754–767 (2014). https://doi.org/10.4236/ojs.2015.57075, http://www.scirp.org/journal/ojs

  2. Babanova, S., Bretschger, O., Roy, J., Cheung, A., Artyushkova, K., Atanassov, P.: Innovative statistical interpretation of Shewanella oneidensis microbial fuel cells data. Phys. Chem. Chem. Phys. 16, 8956–8969 (2014). https://doi.org/10.1039/C4CP00566J

    Article  Google Scholar 

  3. Dai, W., et al.: A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 34(23), 9461–9478 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.017

    Article  Google Scholar 

  4. Del Valle, J., Guerra, C.: La multicolinealidad en modelos de regresión lineal múltiple, 21, 80–83 (2012). https://www.redalyc.org/articulo.oa?id=93223755013

  5. Dokkar, B., Settou, N.E., Imine, O., Saifi, N., Negrou, B., Nemouchi, Z.: Simulation of species transport and water management in PEM fuel cells. Int. J. Hydrogen Energy 36(6), 4220–4227 (2011). https://doi.org/10.1016/j.ijhydene.2010.09.060. 3rd International Workshop in Hydrogen Energy

    Article  Google Scholar 

  6. Espinoza, M., Sunden, B., Andersson, M.: Impact on diffusion parameters computation in gas diffusion layers, considering the land/channel region, using the lattice Boltzmann method. ECS Trans. 75(14), 521–530 (2016). https://doi.org/10.1149/07514.0521ecst

    Article  Google Scholar 

  7. Espinoza, M., Andersson, M., Sundén, B.: Predicting transport parameters in PEFC gas diffusion layers considering micro-architectural variations using the Lattice Boltzmann method. Int. J. Energy Res. 41(4), 565–578 (2017). https://doi.org/10.1002/er.3661

    Article  Google Scholar 

  8. Fedkin, M.: Zero emission vehicles. Penn State Department of Energy and Mineral Engineering (2020). https://www.e-education.psu.edu/eme807/node/671

  9. Gallego, J.: Apuntes de econometría. lade y le. Technical report, Universidad de Cantabria (2008)

    Google Scholar 

  10. Gwak, G., et al.: Performance and efficiency analysis of an HT-PEMFC system with an absorption chiller for tri-generation applications. Energies 12(905), 1–21 (2019). https://doi.org/10.3390/en12050905

    Article  Google Scholar 

  11. Heuer, M., Bernstein, P., Wenske, M., Styczynski, Z.: Results of current density distribution mapping in PEM fuel cells dependent on operation parameters. Energies 6, 3841–3858 (2013). https://doi.org/10.3390/en6083841

    Article  Google Scholar 

  12. Li, H., et al.: A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources 178(1), 103–117 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.068

    Article  Google Scholar 

  13. Li, S., Sundén, B.: Effects of gas diffusion layer deformation on the transport phenomena and performance of PEM fuel cells with interdigitated flow fields. Int. J. Hydrogen Energy 43(33), 16279–16292 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.064

    Article  Google Scholar 

  14. Masand, A., Borah, M., Pathak, A.K., Dhakate, S.R.: Effect of filler content on the properties of expanded-graphite-based composite bipolar plates for application in polymer electrolyte membrane fuel cells. Mater. Res. Express 4(9), 095604 (2017). https://doi.org/10.1088/2053-1591/aa85a5

    Article  Google Scholar 

  15. Morán, A., Martínez, A., Rodríguez, J., Posada, R., Sandoval, O.: PEM fuel cell voltage neural control based on hydrogen pressure regulation. Processes 7(434), 1–15 (2014). https://doi.org/10.3390/pr7070434

    Article  Google Scholar 

  16. Nkansah, B.: On the Kaiser-Meyer-Olkin’s measure of sampling adequacy. Math. Theory Model. 8(7), 52–76 (2018). https://iiste.org/Journals/index.php/MTM/article/view/44386/45790

  17. Okorie, O., Salonitis, K., Charnley, F., Turner, C.: A systems dynamics enabled real-time efficiency for fuel cell data-driven remanufacturing. J. Manuf. Mater. Process. 2(4), 77 (2018). https://doi.org/10.3390/jmmp2040077

    Article  Google Scholar 

  18. Placca, L., Kouta, R., Candusso, D., Blachot, J., Charon, W.: Analysis of PEM fuel cell experimental data using principal component analysis and multi linear regression. Int. J. Hydrogen Energy 35, 4582–4591 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.076

    Article  Google Scholar 

  19. Prasad, I., Krishna, G., Biswas, M., Das, K.: Performance study of PEM fuel cell under different loading conditions. Energy Proc. 54, 468–478 (2014). https://doi.org/10.1016/j.egypro.2014.07.289

    Article  Google Scholar 

  20. Rincón, E., García, J., Bermúdez, J.: Estado del arte de las celdas de combustible. Revista Colombiana de Tecnologías de Avanzada 1(33), 37 (2018). https://doi.org/10.24054/16927257.v33.n33.2019.3320

    Article  Google Scholar 

  21. Robles, C., Rodríguez, O.: Un panorama de las energías renovables en el mundo, latinoamérica y colombia. ESPACIOS 39(34), 10 (2018). https://www.revistaespacios.com/a18v39n34/a18v39n34p10.pdf

  22. Rosero, E., Chiliquinga, B.: Informe final de ecuador (2011). https://www.renenergyobservatory.org/uploads/media/Ecuador_Producto_1_y_2Esp_02.pdf

  23. Samaniego, J., Galindo, L., Mostacedo, S., Ferrer, J., Alatorre, J., Reyes, O.: El cambio climático y el sector de energía en américa latina. Comisión Económica para América Latina y el Caribe, CEPAL (2017). https://www.cepal.org/sites/default/files/news/files/sintesis_pp_cc_cambio_climatico_y_el_sector_de_energia.pdf

  24. Sinha, P.: Multivariate polynomial regression in data mining: methodology, problems and solutions. Int. J. Sci. Eng. Res. 4(12), 962–965 (2013). https://www.researchgate.net/publication/264425037_Multivariate_Polynomial_Regression_in_Data_Mining_Methodology_Problems_and_Solutions

  25. Zhang, J., et al.: PEM fuel cell relative humidity (RH) and its effect on performance at high temperatures. Electrochimica Acta 53(16), 5315–5321 (2008). https://doi.org/10.1016/j.electacta.2008.02.074

    Article  Google Scholar 

  26. Zhao, J., Shahgaldi, S., Alaefour, I., Yang, S., Li, X.: Pore structure and effective diffusion coefficient of catalyzed electrodes in polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 43(7), 3776–3785 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.019

    Article  Google Scholar 

  27. Zhu, L., Yu, Q., Huang, Y., Guan, J., Wang, Y., Yan, Y.: Mathematical modelling and operation parameters analysis of proton exchange membrane fuel cell. IOP Conf. Ser.: Earth Environ. Sci. 467, 012071 (2020). https://doi.org/10.1088/1755-1315/467/1/012071

    Article  Google Scholar 

Download references

Acknowledgment

The authors kindly acknowledge the financial support from FIMCP-CERA-05-2017 project. Computational and physical resources provided by ESPOL are also very grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester Melo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Melo, E., Encalada, Á., Espinoza-Andaluz, M. (2020). Behavior of a Polymer Electrolyte Fuel Cell from a Statistical Point of View Based on Data Analysis. In: Rodriguez Morales, G., Fonseca C., E.R., Salgado, J.P., Pérez-Gosende, P., Orellana Cordero, M., Berrezueta, S. (eds) Information and Communication Technologies. TICEC 2020. Communications in Computer and Information Science, vol 1307. Springer, Cham. https://doi.org/10.1007/978-3-030-62833-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62833-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62832-1

  • Online ISBN: 978-3-030-62833-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics