Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 935))

Abstract

Nowadays, artificial intelligence (AI) is becoming a more effective digital domain promised to facilitate immediate access to information and effective decision making in ever-increasing business environments. While big data analytics for organizational renewal has increasingly received interest from data analytics scholars. Despite the increasing adoption of big data analytics for decision making, relatively little is know about how data management capabilities lead to better data insights for supply chain sustainability and circular economy. The researchers understand the extensive use of big data analytics and artificial intelligence among firms as an essential and necessary tool for shaping the future of the supply chain 4.0 industry. This chapter discusses the role of AI applications for the success of a supply chain in the big data era. From a holistic perspective, today, manufacturers, particularly those with global operations and presence, are under enormous pressure to keep up with the continuous growth of disruptive innovative procurement models. This has open doors for the firms to aggressively seek out big data management capabilities to improve operational efficiencies and to innovate the process. This chapter provides a better understanding related to the application of data analytics in the supply chain context. The research issues are classified into different categories, including big data management and machine learning, a business case for the supply chain and innovation in supply using data. This study also presents machine learning data analysis steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Addo-Tenkorang, R., Helo, P.T.: Big data applications in operations/supply-chain management: a literature review. Comput. Ind. Eng. 101, 528–543 (2016). https://doi.org/10.1016/j.cie.2016.09.023

    Article  Google Scholar 

  2. Agrawal, A., Gans, J., Goldfarb, A.: Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Press (2018)

    Google Scholar 

  3. Akter, S., Wamba, S.F.: Big data and disaster management: a systematic review and agenda for future research. Ann. Oper. Res. 283, 939–959 (2019)

    Article  MathSciNet  Google Scholar 

  4. Albergaria, M., Jabbour, C.J.C.: The role of big data analytics capabilities (BDAC) in understanding the challenges of service information and operations management in the sharing economy: Evidence of peer effects in libraries. Int. J. Inf. Manage., 102023 (2019)

    Google Scholar 

  5. Alicke, K., Rachor, J., Seyfert, A.: Supply Chain 4.0–the next-generation digital supply chain. McKinsey. available https//www mckinsey com/business-functions/operations/our-insights/supply-chain-40–the-nextgeneration-digital-supply-chain. Accessed 6 Sept 2018

    Google Scholar 

  6. Anshari, M., Almunawar, M.N., Lim, S.A., Al-Mudimigh, A.: Customer relationship management and big data enabled: personalization & customization of services. Appl. Comput. Inf. 15, 94–101 (2018)

    Google Scholar 

  7. Bousqaoui, H., Achchab, S., Tikito, K.: Machine learning applications in supply chains: An emphasis on neural network applications. In: 2017 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech), pp 1–7 (2017)

    Google Scholar 

  8. Carbonneau, R., Laframboise, K., Vahidov, R.: Application of machine learning techniques for supply chain demand forecasting. Eur. J. Oper. Res. 184, 1140–1154 (2008)

    Article  MATH  Google Scholar 

  9. Chae, B., Olson, D.L.: Business analytics for supply chain: a dynamic-capabilities framework. Int. J. Inf. Technol. Decis. Mak. 12, 9–26 (2013)

    Article  Google Scholar 

  10. Chang, H.H., Tsai, Y.-C., Hsu, C.-H.: E-procurement and supply chain performance. Supply Chain Manag. An Int. J. 18, 34–51 (2013)

    Article  Google Scholar 

  11. Chen, J., Chen, Y., Du, X., et al.: Big data challenge: a data management perspective. Front. Comput. Sci. 7, 157–164 (2013)

    Article  MathSciNet  Google Scholar 

  12. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob Netw. Appl. 19, 171–209 (2014)

    Article  Google Scholar 

  13. Cheng, J.-H., Chen, H.-P., Lin, Y.-M.: A hybrid forecast marketing timing model based on probabilistic neural network, rough set and C4. 5. Expert Syst. Appl. 37, 1814–1820 (2010)

    Article  Google Scholar 

  14. Daugherty, P.R., Wilson, H.J.: Human + machine: reimagining work in the age of AI (2018)

    Google Scholar 

  15. Davenport, T.: Big Data at Work: Dispelling the Myths, Uncovering the Opportunities. Harvard Business Review Press (2014)

    Google Scholar 

  16. De Mauro, A., Greco, M., Grimaldi, M.: A formal definition of Big Data based on its essential features. Libr. Rev. 65, 122–135 (2016). https://doi.org/10.1108/LR-06-2015-0061

    Article  Google Scholar 

  17. De Treville, S., Shapiro, R.D., Hameri, A.-P.: From supply chain to demand chain: the role of lead time reduction in improving demand chain performance. J. Oper. Manag. 21, 613–627 (2004)

    Article  Google Scholar 

  18. Dezi, L., Santoro, G., Gabteni, H., et al.: The role of big data in shaping ambidextrous business process management: case studies from the service industry. Bus. Process Manag. J. 24, 1163–1175 (2018)

    Article  Google Scholar 

  19. Diaz, A., Rowshankish, K., Saleh, T.: Why data culture matters. McKinsey Q. 3, 1–17 (2018)

    Google Scholar 

  20. Dignan, L.: JDA Software becomes Blue Yonder amid SaaS, autonomous supply chain push. In: ZDNet. https://www.zdnet.com/article/jda-software-becomes-blue-yonder-amid-saas-autonomous-supply-chain-push/. Accessed 4 Mar 2020

  21. Dorsemaine, B., Gaulier, J.-P., Wary, J.-P., et al.: Internet of things: a definition & taxonomy. In: 2015 9th International Conference on Next Generation Mobile Applications, Services and Technologies, pp. 72–77 (2015)

    Google Scholar 

  22. Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision making in the era of Big Data—evolution, challenges and research agenda. Int. J. Inf. Manage. 48, 63–71 (2019). https://doi.org/10.1016/j.ijinfomgt.2019.01.021

    Article  Google Scholar 

  23. Dubey, R., Gunasekaran, A., Childe, S.J., et al.: Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: a study of manufacturing organisations. Int. J. Prod. Econ., 107599 (2019a). https://doi.org/10.1016/j.ijpe.2019.107599

  24. Dubey, R., Gunasekaran, A., Childe, S.J., et al.: Can big data and predictive analytics improve social and environmental sustainability? Technol. Forecast Soc. Change (2017)

    Google Scholar 

  25. Dubey, R., Gunasekaran, A., Childe, S.J., et al.: Big data and predictive analytics and manufacturing performance: integrating institutional theory, resource-based view and big data culture. Br. J. Manag. 30, 341–361 (2019)

    Article  Google Scholar 

  26. Dubey, R., Luo, Z., Gunasekaran, A., et al.: Big data and predictive analytics in humanitarian supply chains: enabling visibility and coordination in the presence of swift trust. Int. J. Logist. Manag. 29, 485–512 (2018)

    Article  Google Scholar 

  27. Frank, A.G., Dalenogare, L.S., Ayala, N.F.: Industry 4.0 technologies: implementation patterns in manufacturing companies. Int. J. Prod. Econ. 210, 15–26 (2019). https://doi.org/10.1016/j.ijpe.2019.01.004

    Article  Google Scholar 

  28. Gandomi, A., Haider, M.: Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manage. 35, 137–144 (2015)

    Article  Google Scholar 

  29. Germann, F., Lilien, G.L., Rangaswamy, A.: Performance implications of deploying marketing analytics. Int. J. Res. Mark. 30, 114–128 (2013)

    Article  Google Scholar 

  30. Gunasekaran, A., Ngai, E.W.T.: Information systems in supply chain integration and management. Eur. J. Oper. Res. 159, 269–295 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gunasekaran, A., Papadopoulos, T., Dubey, R., et al.: Big data and predictive analytics for supply chain and organizational performance. J. Bus. Res. 70, 308–317 (2017)

    Article  Google Scholar 

  32. Gupta, M., George, J.F.: Toward the development of a big data analytics capability. Inf. Manag. 53, 1049–1064 (2016). https://doi.org/10.1016/j.im.2016.07.004

    Article  Google Scholar 

  33. Hallikainen, H., Savimäki, E., Laukkanen, T.: Fostering B2B sales with customer big data analytics. Ind. Mark. Manag., 1–9 (2019). https://doi.org/10.1016/j.indmarman.2019.12.005

  34. Hazen, B.T., Skipper, J.B., Boone, C.A., Hill, R.R.: Back in business: operations research in support of big data analytics for operations and supply chain management. Ann. Oper. Res. 270, 201–211 (2018)

    Article  Google Scholar 

  35. Heikkilä, J.: From supply to demand chain management: efficiency and customer satisfaction. J. Oper. Manag. 20, 747–767 (2002)

    Article  Google Scholar 

  36. Intel Reference Architecture: Machine Learning-Based Advanced Analytics Using Intel Technology. https://www.thailand.intel.com/content/dam/www/public/us/en/documents/guides/machine-learning-based-advanced-analytics-using-technology-ref-arch-fordistribution.pdf%0A. Accessed 3 Mar 2020

  37. Ivanov, D., Dolgui, A., Sokolov, B.: The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. Int. J. Prod. Res. 57, 829–846 (2019)

    Article  Google Scholar 

  38. Jackson, P.: Introduction to Expert Systems. Harlow, Reading, Menlo Park Addison-Wesley (1999)

    MATH  Google Scholar 

  39. Jukić, N., Sharma, A., Nestorov, S., Jukić, B.: Augmenting data warehouses with big data. Inf Syst Manag 32, 200–209 (2015)

    Article  Google Scholar 

  40. Kiron, D., Prentice, P.K., Ferguson, R.B.: The analytics mandate. MIT Sloan Manag. Rev. 55(4), 1–25 (2014)

    Google Scholar 

  41. Kochak, A., Sharma, S.: Demand forecasting using neural network for supply chain management. Int. J. Mech. Eng. Robot. Res. 4, 96–104 (2015)

    Google Scholar 

  42. Kone, E.R.S., Karwan, M.H.: Combining a new data classification technique and regression analysis to predict the Cost-To-Serve new customers. Comput. Ind. Eng. 61, 184–197 (2011)

    Article  Google Scholar 

  43. Lehrer, C., Wieneke, A., Vom Brocke, J.A.N., et al.: How big data analytics enables service innovation: materiality, affordance, and the individualization of service. J. Manag. Inf. Syst. 35, 424–460 (2018)

    Article  Google Scholar 

  44. Lozada, N., Arias-Pérez, J., Perdomo-Charry, G.: Big data analytics capability and co-innovation: An empirical study. Heliyon 5 (2019). https://doi.org/10.1016/j.heliyon.2019.e02541

  45. Luger, G.F.: Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 4th edn. Harlow, Essex, England (2002)

    Google Scholar 

  46. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer Science & Business Media (2013)

    Google Scholar 

  47. Mikalef, P., Krogstie, J., Pappas, I.O., Pavlou, P.: Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Inf. Manag. 57, 103169 (2020). https://doi.org/10.1016/j.im.2019.05.004

    Article  Google Scholar 

  48. Miller, D.D., Brown, E.W.: Artificial intelligence in medical practice: the question to the answer? Am. J. Med. 131, 129–133 (2018)

    Article  Google Scholar 

  49. Müller, O., Fay, M., vom Brocke, J.: The effect of big data and analytics on firm performance: an econometric analysis considering industry characteristics. J. Manag. Inf. Syst. 35, 488–509 (2018)

    Article  Google Scholar 

  50. Nam, D., Lee, J., Lee, H.: Business analytics use in CRM: a nomological net from IT competence to CRM performance. Int. J. Inf. Manag. 45, 233–245 (2019)

    Article  Google Scholar 

  51. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  MATH  Google Scholar 

  52. Perera, W.K.R., Dilini, K.A., Kulawansa, T.: A review of big data analytics for customer relationship management. In: 2018 3rd International Conference on Information Technology Research (ICITR), pp. 1–6 (2018)

    Google Scholar 

  53. Priore, P., Ponte, B., Rosillo, R., de la Fuente, D.: Applying machine learning to the dynamic selection of replenishment policies in fast-changing supply chain environments. Int. J. Prod. Res. 57, 3663–3677 (2019)

    Article  Google Scholar 

  54. Russell, K.: Machine learning is shaping the future of supply chain and logistics management, improving accuracy, speed, scale, and more. Here’s how. https://www.fronetics.com/7-ways-machine-learning-is-improving-supply-chain-management/ (2019)

  55. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 44, 206–226 (2000)

    Article  Google Scholar 

  56. Sanders, N.R., Ganeshan, R., et al.: Special issue of production and operations management on “big data in supply chain management”. Prod. Oper. Manag. 24, 1835–1836 (2015)

    Article  Google Scholar 

  57. Sarhani, M., El Afia, A.: Intelligent system based support vector regression for supply chain demand forecasting. In: 2014 Second World Conference on Complex Systems (WCCS), pp, 79–83 (2014)

    Google Scholar 

  58. SAS Artificial Intelligence: What it is and why it matters. https://www.sas.com/en_us/insights/analytics/what-is-artificial-intelligence.html. Accessed 28 Feb 2020

  59. SAS Big Data Analytics: What it is and why it matters. https://www.sas.com/en_us/insights/analytics/big-data-analytics.html. Accessed 4 Mar 2020

  60. Shahrabi, J., Mousavi, S.S., Heydar, M.: Supply chain demand forecasting: a comparison of machine learning techniques and traditional methods. J. Appl. Sci. 9, 521–527 (2009)

    Article  Google Scholar 

  61. Sharda, R., Delen, D., Turban, E.: Business intelligence, analytics, and data science: a managerial perspective. Pearson (2016)

    Google Scholar 

  62. Sivarajah, U., Kamal, M.M., Irani, Z., Weerakkody, V.: Critical analysis of Big Data challenges and analytical methods. J. Bus. Res. 70, 263–286 (2017)

    Article  Google Scholar 

  63. Tanaka, K.: An Introduction to Fuzzy Logic for Practical Applications. Springer, New York City, USA (1997)

    Google Scholar 

  64. Troisi, O., Maione, G., Grimaldi, M., Loia, F.: Growth hacking: Insights on data-driven decision-making from three firms. Ind. Mark. Manag. doi:10.1016/j.indmarman.2019.08.005 (2019)

    Google Scholar 

  65. Uriarte-Arcia, A.V., López-Yáñez, I., Yáñez-Márquez, C., et al.: Data stream classification based on the gamma classifier. Math. Probl. Eng., ID 939175, 1–17 (2015). https://doi.org/10.1155/2015/939175

    Article  Google Scholar 

  66. Wamba, S.F., Gunasekaran, A., Akter, S., et al.: Big data analytics and firm performance: effects of dynamic capabilities. J. Bus. Res. 70, 356–365 (2017). https://doi.org/10.1016/j.jbusres.2016.08.009

    Article  Google Scholar 

  67. Wang, H., Xu, Z., Fujita, H., Liu, S.: Towards felicitous decision making: An overview on challenges and trends of Big Data. Inf. Sci. (Ny) 367, 747–765 (2016)

    Article  Google Scholar 

  68. Xu, Z., Frankwick, G.L., Ramirez, E.: Effects of big data analytics and traditional marketing analytics on new product success: a knowledge fusion perspective. J. Bus. Res. 69, 1562–1566 (2016)

    Article  Google Scholar 

  69. Yi, X., Liu, F., Liu, J., Jin, H.: Building a network highway for big data: architecture and challenges. IEEE Netw. 28, 5–13 (2014)

    Article  Google Scholar 

  70. Zhou, L., Pan, S., Wang, J., Vasilakos, A.V.: Machine learning on big data: opportunities and challenges. Neurocomputing 237, 350–361 (2017). https://doi.org/10.1016/j.neucom.2017.01.026

    Article  Google Scholar 

  71. Zhu, Y., Xie, C., Wang, G.-J., Yan, X.-G.: Comparison of individual, ensemble and integrated ensemble machine learning methods to predict China’s SME credit risk in supply chain finance. Neural Comput. Appl. 28, 41–50 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usama Awan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awan, U., Kanwal, N., Alawi, S., Huiskonen, J., Dahanayake, A. (2021). Artificial Intelligence for Supply Chain Success in the Era of Data Analytics. In: Hamdan, A., Hassanien, A.E., Razzaque, A., Alareeni, B. (eds) The Fourth Industrial Revolution: Implementation of Artificial Intelligence for Growing Business Success. Studies in Computational Intelligence, vol 935. Springer, Cham. https://doi.org/10.1007/978-3-030-62796-6_1

Download citation

Publish with us

Policies and ethics