Skip to main content

Fused Filament Fabrication of Ceramic Components for Home Use

  • Conference paper
  • First Online:
Digital Conversion on the Way to Industry 4.0 (ISPR 2020)


Ceramic materials offer a variety of desirable material properties, but due to being particularly hard and brittle, are challenging to machine in subtractive processes. Additive manufacturing of ceramics parts requires costly machines and raw materials, limiting the use of additively produced ceramic parts to the professional realm. Fused Filament Fabrication (FFF) has become a widespread additive manufacturing technology, due to low cost of machines and materials (typically polylactic acid (PLA) and ABS)). This paper addresses the suitability of the FFF process to manufacture ceramics parts cost-effectively.

There are many “effect” filaments for FFF use, e.g. with metallic powder content (glitter effect), wood powder (biobased raw materials) or inorganic filler (stone effect). The purpose of this research is to study FFF-derived ceramic parts, which do not only contain a certain fraction of inorganic particles in a polymer matrix, but which have been debindered and sintered to yield “true” ceramic parts comparable to those from a conventional ceramics manufacturing process.

The experiments have focused on FFF-printing available filaments, debindering (using solvents and heat) and sintering (using heat). Commercially available ceramic filaments were identified, all of them having a polymer matrix. For comparison, industrial grade machines for all common additive manufacturing processes for ceramics are listed, with prices that partly exceed € 250,000. During the practical experiments, the filament, containing 60% by volume of zirconium silicate, was successfully printed. The printed specimens were subsequently debindered and sintered with success, but the formation of pockets of trapped air could not be avoided completely during the debindering process. This paper shows that basically, FFF-made ceramic components. Semi-professional “makers” can use ceramic filaments on FFF printers, and apply post-processing in the steps of debindering (chemically with solvents or thermally) and final sintering to obtain parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Weller, C., Kleer, R., Piller, F.T.: Economic implications of 3D printing: market structure models in light of additive manufacturing revisited. Int. J. Prod. Econ. 164, 43–56 (2015).

    Article  Google Scholar 

  2. Mathias, D., Snider, C., Hicks, B., Ranscombe, C.: Accelerating product prototyping through hybrid methods: coupling 3D printing and LEGO. Des. Stud. 62, 68–99 (2019).

    Article  Google Scholar 

  3. Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D.: 3D printing of polymer matrix composites: a review and prospective. Compos. Part B Eng. 110, 442–458 (2017).

    Article  Google Scholar 

  4. Schirmeister, C.G., Hees, T., Licht, E.H., Mülhaupt, R.: 3D printing of high density polyethylene by fused filament fabrication. Addit. Manuf. 28, 152–159 (2019).

    Article  Google Scholar 

  5. Koch, C., Van Hulle, L., Rudolph, N.: Investigation of mechanical anisotropy of the fused filament fabrication process via customized tool path generation. Addit. Manuf. 16, 138–145 (2017).

    Article  Google Scholar 

  6. Thompson, Y., Gonzalez-Gutierrez, J., Kukla, C., Felfer, P.: Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel. Addit. Manuf. 30, 100861 (2019).

  7. Hensen, T.J.: Additive manufacturing of ceramic nanopowder by direct coagulation printing. Addit. Manuf. 23, 140–150 (2018).

  8. Deckers, J.: Additive manufacturing of ceramics: a review. J. Ceram. Sci. Tech. 04 (2014).

  9. Agarwala, M.K., Weeren, R.V., Bandyopadhyay, A., Safari, A., Danforth, S.C.: Filament feed materials for fused deposition processing of ceramics and metals. Int. Solid Free. Fabr. Symp., 8 (1996).

  10. Chen, Z.: 3D printing of ceramics: a review. J. Eur. Ceram. Soc., 399(4), 661–687 (2019).

  11. Cano, S.: Additive manufacturing of zirconia parts by fused filament fabrication and solvent debinding: selection of binder formulation. Addit. Manuf. 26, 117–128 (2019).

  12. Amaco White 25-D Ceramic Clay FilametTM. The Virtual Foundry. Accessed 26 Jan 2020

  13. Amaco X-23 Ceramic Clay FilametTM: The Virtual Foundry. Accessed 26 Jan 2020)

  14. LAYCeramic Ceramic Filament - 3.00 mm (1 kg). MatterHackers. Accessed 26 Jan 2020

  15. New Ceramic 3d Printing Filament 1.75 mm Ceramic Texture Impressora 3d Plastic Filament (1 kg). Accessed 26 Jan 2020

  16. Abel, J.: Fused Filament Fabrication (FFF) of Metal-Ceramic Components. J. Vis. Exp. 143, 57693 (2019).

  17. Gonzalez-Gutierrez, J., Cano, S., Schuschnigg, S., Kukla, C., Sapkota, J., Holzer, C.: Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives. Materials 11(5), 840 (2018).

  18. Gorjan, L., Tonello, R., Sebastian, T., Colombo, P., Clemens, F.: Fused deposition modeling of mullite structures from a preceramic polymer and γ-alumina. J. Eur. Ceram. Soc. 39(7), 2463–2471 (2019).

    Article  Google Scholar 

  19. Travitzky, N.: Additive manufacturing of ceramic-based materials. Adv. Eng. Mater. 16(6), 729–754 (2014).

  20. Umfrage: 3D-Drucker zieht ein in deutsche Privathaushalte: Accessed 28 Jan 2020

  21. Rundle, G.: A Revolution in the Making. Affirm Press, Melbourne (2014)

    Google Scholar 

  22. Lengauer, W.: Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components. Int. J. Refract. Met. Hard Mater 82, 141–149 (2019).

  23. Manikandan, K., Wi, K., Zhang, X., Wang, K., Qin, H.: Characterizing cement mixtures for concrete 3D printing. Manuf. Lett. 24, 33–37 (2020).

    Article  Google Scholar 

  24. Larano, M.: 3D printing complex chocolate objects: platform design, optimization and evaluation. J. Food Eng. 215, 13–22 (2017).

  25. Lee, C.Y., Liu, C.Y.: The influence of forced-air cooling on a 3D printed part manufactured by fused filament fabrication. Addit. Manuf. 25, 196–203 (2019).

    Article  Google Scholar 

  26. Bose, S.: Additive manufacturing of ceramics. Addit. Manuf. (2015). Accessed 19 Dec 2019

  27. Cesarano, J.: A review of robocasting technology. MRS Proc. 542, 133 (1998).

  28. Bellini, A., Shor, L., Guceri, S.I.: New developments in fused deposition modeling of ceramics. Rapid Prototyp. J. 11(4), 214–220 (2005).

    Article  Google Scholar 

  29. Bengisu, M.: Engineering Ceramics. Springer Science & Business Media (2013)

    Google Scholar 

  30. Hornbogen, E., Eggeler, G., Werner, E.: Werkstoffe: Aufbau und Eigenschaften von Keramik-, Metall-, Polymer- und Verbundwerkstoffen. Springer, Heidelberg (2019)

    Book  Google Scholar 

  31. Spoerk, M., Gonzalez-Gutierrez, J., Sapkota, J., Schuschnigg, S., Holzer, C.: Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication. Plast. Rubber Compos. 47(1), 17–24 (2018).

    Article  Google Scholar 

  32. Lewis, J.A., Smay, J.E., Stuecker, J., Cesarano, J.: Direct ink writing of three-dimensional ceramic structures. J. Am. Ceram. Soc. 89(12), 3599–3609 (2006).

    Article  Google Scholar 

  33. Bellini, A.: Fused deposition of ceramics: a comprehensive experimental, analytical and computational study of material behavior, fabrication process and equipment design. ProQuest Information and Learning Company (2002)

    Google Scholar 

  34. Rahaman, M., Rahaman, M.N.: Ceramic Processing. CRC Press,  Boca Raton (2006)

    Google Scholar 

  35. Peterson, A.M.: Review of acrylonitrile butadiene styrene in fused filament fabrication: a plastics engineering-focused perspective. Addit. Manuf. 27, 363–371 (2019).

    Article  Google Scholar 

  36. Todd, I., Sidambe, A.T.: Developments in metal injection moulding (MIM). Adv. Powder Metall, 109–146 (2013),

  37. Onagoruwa, S., Bose, S., Bandyopadhyay, A.: Fused Deposition of Ceramics (FDC) and Composites. Int. Solid Free. Fabr. Symp., p. 8 (2001).

  38. Balani, S.B., Chabert, F., Nassiet, V., Cantarel, A.: Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid. Addit. Manuf. 25, 112–121 (2019).

    Article  Google Scholar 

  39. Rangarajan, S.: The Role of Materials Processing Variables in the FDC Process

    Google Scholar 

  40. Danforth, S.: Fused deposition of ceramics: a new technique for the rapid fabrication of ceramic components. Mater. Technol. 10(7–8), 144–146 (1995).

    Article  Google Scholar 

  41. ZetaMix Filament: ZetaMix. Accessed 26 Apr 2020

  42. ZetaMix Filament: ZetaMix. Accessed 26 Apr 2020

  43. ZetaMix Filament: ZetaMix. Accessed 26 Apr 2020

  44. Zirconium Silicate (Zircopax®) Ceramic FilametTM: The Virtual Foundry. Accessed 26 Apr 2020

  45. Suárez, G., Acevedo, S., Rendtorff, N.M., Garrido, L.B., Aglietti, E.F.: Colloidal processing, sintering and mechanical properties of zircon (ZrSiO4). Ceram. Int. 41(1), 1015–1021 (2015).

    Article  Google Scholar 

  46. 3D filament 1,75 mm Ceramic Keramik 1000 g 1 kg: Accessed 26 Apr 2020

  47. LAYCeramic Ceramic Filament - 2.85 mm (1 kg): MatterHackers. Accessed 26 Apr 2020

  48. China keramik filament hohe qualität 3d drucker filament (1 kg): Accessed 26 Apr 2020

  49. Lay-Brick (Ceramic): Filament2Print. Accessed 26 Apr 2020

  50. Amaco X-23 Ceramic Clay FilametTM: The Virtual Foundry. Accessed 26 Apr 2020

  51. Amaco 46-D Ceramic Clay FilametTM: The Virtual Foundry. Accessed 26 Apr 2020

  52. Amaco White 25-D Ceramic Clay FilametTM: The Virtual Foundry. Accessed 26 Apr 2020

  53. Markforged Keramik Stützmaterial – 200 cm3 Rolle: Mark3D. Accessed 26 Apr 2020

  54. Werkstoffe – Additive Fertigung für besondere Ansprüche: 3d-figo. Accessed 01 May 2020

  55. Keramik - Verdrucken Sie CIM-Keramiken mit AIM3D: AIM3D. Accessed 01 May 2020

  56. 3d-figo FFD 150H review - professional ceramic 3D printer: Aniwaa. Accessed 01 May 2020

  57. AIM3D ExAM 255 review - industrial 3D printer (pellet extruder): Aniwaa. Accessed 01 May 2020

  58. ExOne Innovent review - industrial 3D printer (sand, metal, and ceramics). Aniwaa. Accessed 01 May 2020

  59. Kwambio Ceramo One review - ceramic additive manufacturing system. Aniwaa. Accessed 01 May 2020

  60. Voxeljet VX4000 review - industrial 3D printer (large build volume). Aniwaa. Accessed 01 May 2020

  61. 3D Systems ProX DMP 200 Dental review - professional 3D printer: Aniwaa. Accessed 01 May 2020

  62. Lithoz CeraFab 7500 review - industrial ceramic 3D printer: Aniwaa. Accessed 01 May 2020

  63. 3DCeram Ceramaker review - industrial ceramic 3D printer: Aniwaa. Accessed 01 May 2020

  64. Admatec ADMAFLEX 130 review - industrial ceramic 3D printer (DLP):, Aniwaa. Accessed 01 May 2020

  65. Prodways ProMaker V6000 review - industrial ceramic 3D printer: Aniwaa. Accessed 01 May 2020

  66. Informationen zum PLA Filament: material4print. Accessed 03 May 2020

  67. Kaiser, A., Lobert, M., Telle, R.: Thermal stability of zircon (ZrSiO4). J. Eur. Ceram. Soc. 28(11), 2199–2211 (2008).

    Article  Google Scholar 

  68. Bauer, J., Durakbasa, N.: Application of multi-technology in the manufacture of parts by 3d printing, ESIAM19, Trondheim, Norway, 9–11 September 2019

    Google Scholar 

  69. Gonzalez-Gutierrez, J., Treitler, M., Spoerk, M., Arbeiter, F., Schuschnigg, S., Lammer, H., Lackner, M., Aburaia, M., Poszvek, G., Zhang, H., Sapkota, J., Holzer, C.: Carbon fiber reinforced thermoplastics for material extrusion additive manufacturing. In: Conference Proceedings of 35th International Conference of the Polymer Processing Society (2019)

    Google Scholar 

  70. Aburaia, M., Lackner, M., Grünbichler, H., Engelhardt-Nowitzki, C., Markl, E., Lammer, H., Haiguang, Z., Wang, J., Sapotka, J., Janics, T., Hailberger, M.: Freeform-FDM process development using natural fibre reinforced biopolymers. In: 2nd International Conference on 3D Printing Technology and Innovation March 19–20, London, UK (2018)

    Google Scholar 

  71. Hage 3D. Accessed 24 Aug 2020

  72. HotEndWorks. Accessed 24 Aug 2020

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Günther Poszvek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poszvek, G. et al. (2021). Fused Filament Fabrication of Ceramic Components for Home Use. In: Durakbasa, N.M., Gençyılmaz, M.G. (eds) Digital Conversion on the Way to Industry 4.0. ISPR 2020. Lecture Notes in Mechanical Engineering. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62783-6

  • Online ISBN: 978-3-030-62784-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics