Abstract
Ceramic materials offer a variety of desirable material properties, but due to being particularly hard and brittle, are challenging to machine in subtractive processes. Additive manufacturing of ceramics parts requires costly machines and raw materials, limiting the use of additively produced ceramic parts to the professional realm. Fused Filament Fabrication (FFF) has become a widespread additive manufacturing technology, due to low cost of machines and materials (typically polylactic acid (PLA) and ABS)). This paper addresses the suitability of the FFF process to manufacture ceramics parts cost-effectively.
There are many “effect” filaments for FFF use, e.g. with metallic powder content (glitter effect), wood powder (biobased raw materials) or inorganic filler (stone effect). The purpose of this research is to study FFF-derived ceramic parts, which do not only contain a certain fraction of inorganic particles in a polymer matrix, but which have been debindered and sintered to yield “true” ceramic parts comparable to those from a conventional ceramics manufacturing process.
The experiments have focused on FFF-printing available filaments, debindering (using solvents and heat) and sintering (using heat). Commercially available ceramic filaments were identified, all of them having a polymer matrix. For comparison, industrial grade machines for all common additive manufacturing processes for ceramics are listed, with prices that partly exceed € 250,000. During the practical experiments, the filament, containing 60% by volume of zirconium silicate, was successfully printed. The printed specimens were subsequently debindered and sintered with success, but the formation of pockets of trapped air could not be avoided completely during the debindering process. This paper shows that basically, FFF-made ceramic components. Semi-professional “makers” can use ceramic filaments on FFF printers, and apply post-processing in the steps of debindering (chemically with solvents or thermally) and final sintering to obtain parts.
Keywords
- Ceramic materials
- Fused Filament Fabrication (FFF)
- Debindering
- Cost-effectively
This is a preview of subscription content, access via your institution.
Buying options

References
Weller, C., Kleer, R., Piller, F.T.: Economic implications of 3D printing: market structure models in light of additive manufacturing revisited. Int. J. Prod. Econ. 164, 43–56 (2015). https://doi.org/10.1016/j.ijpe.2015.02.020
Mathias, D., Snider, C., Hicks, B., Ranscombe, C.: Accelerating product prototyping through hybrid methods: coupling 3D printing and LEGO. Des. Stud. 62, 68–99 (2019). https://doi.org/10.1016/j.destud.2019.04.003
Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D.: 3D printing of polymer matrix composites: a review and prospective. Compos. Part B Eng. 110, 442–458 (2017). https://doi.org/10.1016/j.compositesb.2016.11.034
Schirmeister, C.G., Hees, T., Licht, E.H., Mülhaupt, R.: 3D printing of high density polyethylene by fused filament fabrication. Addit. Manuf. 28, 152–159 (2019). https://doi.org/10.1016/j.addma.2019.05.003
Koch, C., Van Hulle, L., Rudolph, N.: Investigation of mechanical anisotropy of the fused filament fabrication process via customized tool path generation. Addit. Manuf. 16, 138–145 (2017). https://doi.org/10.1016/j.addma.2017.06.003
Thompson, Y., Gonzalez-Gutierrez, J., Kukla, C., Felfer, P.: Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel. Addit. Manuf. 30, 100861 (2019). https://doi.org/10.1016/j.addma.2019.100861
Hensen, T.J.: Additive manufacturing of ceramic nanopowder by direct coagulation printing. Addit. Manuf. 23, 140–150 (2018). https://doi.org/10.1016/j.addma.2018.07.010
Deckers, J.: Additive manufacturing of ceramics: a review. J. Ceram. Sci. Tech. 04 (2014). https://doi.org/10.4416/jcst2014-00032
Agarwala, M.K., Weeren, R.V., Bandyopadhyay, A., Safari, A., Danforth, S.C.: Filament feed materials for fused deposition processing of ceramics and metals. Int. Solid Free. Fabr. Symp., 8 (1996). http://hdl.handle.net/2152/70277
Chen, Z.: 3D printing of ceramics: a review. J. Eur. Ceram. Soc., 399(4), 661–687 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
Cano, S.: Additive manufacturing of zirconia parts by fused filament fabrication and solvent debinding: selection of binder formulation. Addit. Manuf. 26, 117–128 (2019). https://doi.org/10.1016/j.addma.2019.01.001
Amaco White 25-D Ceramic Clay FilametTM. The Virtual Foundry. https://shop.thevirtualfoundry.com/products/amaco-white-25-d-ceramic-clay-filamet. Accessed 26 Jan 2020
Amaco X-23 Ceramic Clay FilametTM: The Virtual Foundry. https://shop.thevirtualfoundry.com/products/amaco-x-23-ceramic-clay-filamet. Accessed 26 Jan 2020)
LAYCeramic Ceramic Filament - 3.00 mm (1 kg). MatterHackers. https://www.matterhackers.com/store/3d-printer-filament/layceramic-3.00mm. Accessed 26 Jan 2020
New Ceramic 3d Printing Filament 1.75 mm Ceramic Texture Impressora 3d Plastic Filament (1 kg). https://www.alibaba.com/product-detail/New-Ceramic-3d-printing-filament-1_60736064964.html. Accessed 26 Jan 2020
Abel, J.: Fused Filament Fabrication (FFF) of Metal-Ceramic Components. J. Vis. Exp. 143, 57693 (2019). https://doi.org/10.3791/57693
Gonzalez-Gutierrez, J., Cano, S., Schuschnigg, S., Kukla, C., Sapkota, J., Holzer, C.: Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives. Materials 11(5), 840 (2018). https://doi.org/10.3390/ma11050840
Gorjan, L., Tonello, R., Sebastian, T., Colombo, P., Clemens, F.: Fused deposition modeling of mullite structures from a preceramic polymer and γ-alumina. J. Eur. Ceram. Soc. 39(7), 2463–2471 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.02.032
Travitzky, N.: Additive manufacturing of ceramic-based materials. Adv. Eng. Mater. 16(6), 729–754 (2014). https://doi.org/10.1002/adem.201400097
Umfrage: 3D-Drucker zieht ein in deutsche Privathaushalte: reichelt.de. https://www.reichelt.de/magazin/studien/umfrage-3d-drucker/. Accessed 28 Jan 2020
Rundle, G.: A Revolution in the Making. Affirm Press, Melbourne (2014)
Lengauer, W.: Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components. Int. J. Refract. Met. Hard Mater 82, 141–149 (2019). https://doi.org/10.1016/j.ijrmhm.2019.04.011
Manikandan, K., Wi, K., Zhang, X., Wang, K., Qin, H.: Characterizing cement mixtures for concrete 3D printing. Manuf. Lett. 24, 33–37 (2020). https://doi.org/10.1016/j.mfglet.2020.03.002
Larano, M.: 3D printing complex chocolate objects: platform design, optimization and evaluation. J. Food Eng. 215, 13–22 (2017). https://doi.org/10.1016/j.jfoodeng.2017.06.029
Lee, C.Y., Liu, C.Y.: The influence of forced-air cooling on a 3D printed part manufactured by fused filament fabrication. Addit. Manuf. 25, 196–203 (2019). https://doi.org/10.1016/j.addma.2018.11.012
Bose, S.: Additive manufacturing of ceramics. Addit. Manuf. (2015). https://www.taylorfrancis.com/. Accessed 19 Dec 2019
Cesarano, J.: A review of robocasting technology. MRS Proc. 542, 133 (1998). https://doi.org/10.1557/proc-542-133
Bellini, A., Shor, L., Guceri, S.I.: New developments in fused deposition modeling of ceramics. Rapid Prototyp. J. 11(4), 214–220 (2005). https://doi.org/10.1108/13552540510612901
Bengisu, M.: Engineering Ceramics. Springer Science & Business Media (2013)
Hornbogen, E., Eggeler, G., Werner, E.: Werkstoffe: Aufbau und Eigenschaften von Keramik-, Metall-, Polymer- und Verbundwerkstoffen. Springer, Heidelberg (2019)
Spoerk, M., Gonzalez-Gutierrez, J., Sapkota, J., Schuschnigg, S., Holzer, C.: Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication. Plast. Rubber Compos. 47(1), 17–24 (2018). https://doi.org/10.1080/14658011.2017.1399531
Lewis, J.A., Smay, J.E., Stuecker, J., Cesarano, J.: Direct ink writing of three-dimensional ceramic structures. J. Am. Ceram. Soc. 89(12), 3599–3609 (2006). https://doi.org/10.1111/j.1551-2916.2006.01382.x
Bellini, A.: Fused deposition of ceramics: a comprehensive experimental, analytical and computational study of material behavior, fabrication process and equipment design. ProQuest Information and Learning Company (2002)
Rahaman, M., Rahaman, M.N.: Ceramic Processing. CRC Press, Boca Raton (2006)
Peterson, A.M.: Review of acrylonitrile butadiene styrene in fused filament fabrication: a plastics engineering-focused perspective. Addit. Manuf. 27, 363–371 (2019). https://doi.org/10.1016/j.addma.2019.03.030
Todd, I., Sidambe, A.T.: Developments in metal injection moulding (MIM). Adv. Powder Metall, 109–146 (2013), https://doi.org/10.1533/9780857098900.1.109
Onagoruwa, S., Bose, S., Bandyopadhyay, A.: Fused Deposition of Ceramics (FDC) and Composites. Int. Solid Free. Fabr. Symp., p. 8 (2001). http://dx.doi.org/10.26153/tsw/3267
Balani, S.B., Chabert, F., Nassiet, V., Cantarel, A.: Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid. Addit. Manuf. 25, 112–121 (2019). https://doi.org/10.1016/j.addma.2018.10.012
Rangarajan, S.: The Role of Materials Processing Variables in the FDC Process
Danforth, S.: Fused deposition of ceramics: a new technique for the rapid fabrication of ceramic components. Mater. Technol. 10(7–8), 144–146 (1995). https://doi.org/10.1080/10667857.1995.11752614
ZetaMix Filament: ZetaMix. http://zetamix.fr/en/filaments/31-79-zetamix-filament.html. Accessed 26 Apr 2020
ZetaMix Filament: ZetaMix. http://zetamix.fr/en/filaments/31-81-zetamix-filament.html. Accessed 26 Apr 2020
ZetaMix Filament: ZetaMix. http://zetamix.fr/en/filaments/31-85-zetamix-filament.html. Accessed 26 Apr 2020
Zirconium Silicate (Zircopax®) Ceramic FilametTM: The Virtual Foundry. https://shop.thevirtualfoundry.com/products/zirconium-silicate-filamet-1. Accessed 26 Apr 2020
Suárez, G., Acevedo, S., Rendtorff, N.M., Garrido, L.B., Aglietti, E.F.: Colloidal processing, sintering and mechanical properties of zircon (ZrSiO4). Ceram. Int. 41(1), 1015–1021 (2015). https://doi.org/10.1016/j.ceramint.2014.09.024
3D filament 1,75 mm Ceramic Keramik 1000 g 1 kg: printmania.at. https://printmania.at/spezialmaterialien/3500-3d-filament-175-mm-ceramic-keramik-1000g.html. Accessed 26 Apr 2020
LAYCeramic Ceramic Filament - 2.85 mm (1 kg): MatterHackers. https://www.matterhackers.com/store/l/layceramic-ceramic-filament-285mm-1kg/sk/M7RE5J6P. Accessed 26 Apr 2020
China keramik filament hohe qualität 3d drucker filament (1 kg): aliexpress.com. https://de.aliexpress.com/item/4000890880279.html?src=ibdm_d03p0558e02r02&sk=&aff_platform=&aff_trace_key=&af=&cv=&cn=&dp. Accessed 26 Apr 2020
Lay-Brick (Ceramic): Filament2Print. https://filament2print.com/gb/wood-ceramic/587-lay-brick.html. Accessed 26 Apr 2020
Amaco X-23 Ceramic Clay FilametTM: The Virtual Foundry. https://shop.thevirtualfoundry.com/products/amaco-x-23-ceramic-clay-filamet. Accessed 26 Apr 2020
Amaco 46-D Ceramic Clay FilametTM: The Virtual Foundry. https://shop.thevirtualfoundry.com/products/amaco-46-d-ceramic-clay-filamet. Accessed 26 Apr 2020
Amaco White 25-D Ceramic Clay FilametTM: The Virtual Foundry. https://shop.thevirtualfoundry.com/products/amaco-white-25-d-ceramic-clay-filamet. Accessed 26 Apr 2020
Markforged Keramik Stützmaterial – 200 cm3 Rolle: Mark3D. https://www.mark3d.com/de/produkt/markforged-stuetzmaterial-keramik/. Accessed 26 Apr 2020
Werkstoffe – Additive Fertigung für besondere Ansprüche: 3d-figo. https://3d-figo.de/werkstoffe/. Accessed 01 May 2020
Keramik - Verdrucken Sie CIM-Keramiken mit AIM3D: AIM3D. https://www.aim3d.de/materialien/keramik/. Accessed 01 May 2020
3d-figo FFD 150H review - professional ceramic 3D printer: Aniwaa. https://www.aniwaa.com/product/3d-printers/3d-figo-ffd-150h/. Accessed 01 May 2020
AIM3D ExAM 255 review - industrial 3D printer (pellet extruder): Aniwaa. https://www.aniwaa.com/product/3d-printers/aim3d-exam-255/. Accessed 01 May 2020
ExOne Innovent review - industrial 3D printer (sand, metal, and ceramics). Aniwaa. https://www.aniwaa.com/product/3d-printers/exone-innovent/. Accessed 01 May 2020
Kwambio Ceramo One review - ceramic additive manufacturing system. Aniwaa. https://www.aniwaa.com/product/3d-printers/kwambio-ceramo-one/. Accessed 01 May 2020
Voxeljet VX4000 review - industrial 3D printer (large build volume). Aniwaa. https://www.aniwaa.com/product/3d-printers/voxeljet-vx4000/. Accessed 01 May 2020
3D Systems ProX DMP 200 Dental review - professional 3D printer: Aniwaa. https://www.aniwaa.com/product/3d-printers/3d-systems-prox-200-dental/. Accessed 01 May 2020
Lithoz CeraFab 7500 review - industrial ceramic 3D printer: Aniwaa. https://www.aniwaa.com/product/3d-printers/lithoz-cerafab-7500/. Accessed 01 May 2020
3DCeram Ceramaker review - industrial ceramic 3D printer: Aniwaa. https://www.aniwaa.com/product/3d-printers/3dceram-ceramaker/. Accessed 01 May 2020
Admatec ADMAFLEX 130 review - industrial ceramic 3D printer (DLP):, Aniwaa. https://www.aniwaa.com/product/3d-printers/admatec-admaflex-130/. Accessed 01 May 2020
Prodways ProMaker V6000 review - industrial ceramic 3D printer: Aniwaa. https://www.aniwaa.com/product/3d-printers/prodways-promaker-v6000/. Accessed 01 May 2020
Informationen zum PLA Filament: material4print. https://www.material4print.de/de/infos-zum-filament-pla__138/. Accessed 03 May 2020
Kaiser, A., Lobert, M., Telle, R.: Thermal stability of zircon (ZrSiO4). J. Eur. Ceram. Soc. 28(11), 2199–2211 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.040
Bauer, J., Durakbasa, N.: Application of multi-technology in the manufacture of parts by 3d printing, ESIAM19, Trondheim, Norway, 9–11 September 2019
Gonzalez-Gutierrez, J., Treitler, M., Spoerk, M., Arbeiter, F., Schuschnigg, S., Lammer, H., Lackner, M., Aburaia, M., Poszvek, G., Zhang, H., Sapkota, J., Holzer, C.: Carbon fiber reinforced thermoplastics for material extrusion additive manufacturing. In: Conference Proceedings of 35th International Conference of the Polymer Processing Society (2019)
Aburaia, M., Lackner, M., Grünbichler, H., Engelhardt-Nowitzki, C., Markl, E., Lammer, H., Haiguang, Z., Wang, J., Sapotka, J., Janics, T., Hailberger, M.: Freeform-FDM process development using natural fibre reinforced biopolymers. In: 2nd International Conference on 3D Printing Technology and Innovation March 19–20, London, UK (2018)
Hage 3D. http://hage3d.com/index.php/hage3d-3ddrucker-84l/. Accessed 24 Aug 2020
HotEndWorks. https://www.aniwaa.com/product/3d-printers/hotend-works-hdfab-advanced-material-3d-printer/. Accessed 24 Aug 2020
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Poszvek, G. et al. (2021). Fused Filament Fabrication of Ceramic Components for Home Use. In: Durakbasa, N.M., Gençyılmaz, M.G. (eds) Digital Conversion on the Way to Industry 4.0. ISPR 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-62784-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-62784-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62783-6
Online ISBN: 978-3-030-62784-3
eBook Packages: EngineeringEngineering (R0)