Abstract
Recently, a novel family of two-dimensional materials, called MXenes, comprising of early transition metal nitrides and carbides was discovered with intriguing characteristics and potential applications. MXenes are synthesized by adopting various top down and bottom up approaches such as selective etching of “A” element from MAX phases result in a new MXene element, for instance, Ti3C2, V2C, Ti3CN, MoC2, Ta4C3 etc. MXenes exhibit high metallic conductivity in which solid layers are bonded together with strong ionic, covalent and metallic bonds. The hydrophilic nature of MXene enhance its practical applications such as electrocatalyst, energy storage devices and in biomedical applications. Here, the chapter reviews the basic structure of newly discovered MXene materials, different synthesis techniques, structural, electrical and optical properties. Some potential applications in the field of biomedical, energy conversion and electrochemical energy storage systems and electrocatalyst are also presented in this chapter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)
Watanabe, K., Taniguchi, T., Kanda, H.: Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3(6), 404 (2004)
Lalmi, B., et al.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97(22), 223109 (2010)
Kamal, C., Ezawa, M.: Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 91(8), 085423 (2015)
Ni, Z., et al.: Tunable bandgap in silicene and germanene. Nano Lett. 12(1), 113–118 (2011)
Aktürk, E., Aktürk, O.Ü., Ciraci, S.: Single and bilayer bismuthene: stability at high temperature and mechanical and electronic properties. Phys. Rev. B 94(1), 014115 (2016)
Wang, Q.H., et al.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699 (2012)
Fiori, G., et al.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768 (2014)
Rao, C., Gopalakrishnan, K., Maitra, U.: Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl. Mater. Interfaces 7(15), 7809–7832 (2015)
Wang, X., et al.: Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem. Soc. Rev. 45(8), 2239–2262 (2016)
Naguib, M., et al.: 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014)
Anasori, B., et al.: Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015)
Ng, V.M.H., et al.: Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5(7), 3039–3068 (2017)
Naguib, M., et al.: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011)
Zhang, C., et al.: Two‐dimensional MXenes for lithium‐sulfur batteries. InfoMat 2(4), 613–638 (2020)
Ying, G., et al.: Conductive transparent V2CTx (MXene) films. FlatChem 8, 25–30 (2018)
Hantanasirisakul, K., et al.: Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2(6), 1600050 (2016)
Eklund, P., Rosen, J., Persson, P.O.Å.: Layered ternary M n + 1AX n phases and their 2D derivative MXene: an overview from a thin-film perspective. J. Phys. D Appl. Phys. 50(11), 113001 (2017)
Naguib, M., et al.: Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012)
Naguib, M., et al.: New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 135(43), 15966–15969 (2013)
Yan, J., et al.: Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Func. Mater. 27(30), 1701264 (2017)
Zhu, M., et al.: Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 6(21), 1600969 (2016)
Dall’Agnese, Y., et al.: Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J. Phys. Chem. Lett. 6(12), 2305–2309 (2015)
Naguib, M., et al.: MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16(1), 61–64 (2012)
Gao, G., O’Mullane, A.P., Du, A.: 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 7(1), 494–500 (2016)
Lee, Y.H., et al.: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24(17), 2320–2325 (2012)
Gogotsi, Y.: Chemical vapour deposition: transition metal carbides go 2D. Nat. Mater. 14(11) (2015)
Halim, J., et al.: Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Func. Mater. 26(18), 3118–3127 (2016)
Xu, C., et al.: Large-area high-quality 2D ultrathin Mo 2 C superconducting crystals. Nat. Mater. 14(11), 1135 (2015)
Liu, Z., et al.: Unique domain structure of two-dimensional α-Mo2C superconducting crystals. Nano Lett. 16(7), 4243–4250 (2016)
Geng, D., et al.: Controlled growth of ultrathin Mo2C superconducting crystals on liquid Cu surface. 2D Mater. 4, 011012 (2017)
Verger, L., et al.: Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. (2019)
Qiao, J.-B., et al.: One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting α − M o 2 C. Phys. Rev. B 95(20), 201403 (2017)
Wang, Z., et al.: Metal immiscibility route to synthesis of ultrathin carbides, borides, and nitrides. Adv. Mater. 29(29), 1700364 (2017)
Deng, R., et al.: Graphene/Mo2C heterostructure directly grown by chemical vapor deposition. Chin. Phys. B 26(6), 067901 (2017)
Xu, C., et al.: Strongly coupled high-quality graphene/2D superconducting Mo2C vertical heterostructures with aligned orientation. ACS Nano 11(6), 5906–5914 (2017)
Xiao, X., et al.: Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 11(2), 2180–2186 (2017)
Joshi, S., et al.: Facile synthesis of large area two-dimensional layers of transition-metal nitride and their use as insertion electrodes. ACS Energy Lett. 2(6), 1257–1262 (2017)
Zhang, F., et al.: Plasma-enhanced pulsed-laser deposition of single-crystalline M o 2 C ultrathin superconducting films. Phys. Rev. Mater. 1(3), 034002 (2017)
Zhang, Z., et al.: Substrate orientation-induced epitaxial growth of face centered cubic Mo 2 C superconductive thin film. J. Mater. Chem. C 5(41), 10822–10827 (2017)
Barsoum, M.W.: MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. Wiley (2013)
Zhou, J., et al.: A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed. 55(16), 5008–5013 (2016)
Zhou, J., et al.: Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 11(4), 3841–3850 (2017)
Liu, Z., et al.: (Cr 2/3 Ti 1/3) 3 AlC 2 and (Cr 5/8 Ti 3/8) 4 AlC 3: new MAX-phase Compounds in Ti–Cr–Al–C System. J. Am. Ceram. Soc. 97(1), 67–69 (2014)
Anasori, B., et al.: Mo2TiAlC2: a new ordered layered ternary carbide. Scripta Mater. 101, 5–7 (2015)
Lakhe, P., et al.: Process safety analysis for Ti3C2T x MXene synthesis and processing. Ind. Eng. Chem. Res. 58(4), 1570–1579 (2019)
Liu, F., et al.: Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 416, 781–789 (2017)
Liu, F., et al.: Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries. J. Electrochem. Soc. 164(4), A709–A713 (2017)
Halim, J., et al.: Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26(7), 2374–2381 (2014)
Ghidiu, M., et al.: Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 28(10), 3507–3514 (2016)
Mashtalir, O., et al.: Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013)
Mashtalir, O., et al.: Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 27(23), 3501–3506 (2015)
Omomo, Y., et al.: Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc. 125(12), 3568–3575 (2003)
Naguib, M., et al.: Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans. 44(20), 9353–9358 (2015)
Meshkian, R., et al.: Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater. 125, 476–480 (2017)
Enyashin, A.N., Ivanovskii, A.L.: Structural and electronic properties and stability of MX enes Ti2C and Ti3C2 functionalized by methoxy groups. J. Phys. Chem. C 117(26), 13637–13643 (2013)
Persson, I., et al.: Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases. Small 14(17), 1703676 (2018)
Intikhab, S., et al.: Stoichiometry and surface structure dependence of hydrogen evolution reaction activity and stability of MoxC MXenes. J. Catal. 371, 325–332 (2019)
Shuck, C.E., et al.: Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl. Nano Mater. (2019)
Khazaei, M., et al.: Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Func. Mater. 23(17), 2185–2192 (2013)
Miranda, A., et al.: Electronic properties of freestanding Ti3C2Tx MXene monolayers. Appl. Phys. Lett. 108(3), 033102 (2016)
Halim, J., et al.: Electronic and optical characterization of 2D Ti2C and Nb2C (MXene) thin films. J. Phys. Condens. Matter 31(16), 165301 (2019)
Cui, J., et al.: Strain-tunable electronic structures and optical properties of semiconducting MXenes. Nanotechnology 30(34), 345205 (2019)
Lai, S., et al.: Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CTx, T:–OH,–F and–O). Nanoscale 7(46), 19390–19396 (2015)
Liu, H., et al.: A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sens. Actuators B Chem. 218, 60–66 (2015)
Dai, C., et al.: Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano 11(12), 12696–12712 (2017)
Chen, X., et al.: Ratiometric photoluminescence sensing based on Ti 3 C 2 MXene quantum dots as an intracellular pH sensor. Nanoscale 10(3), 1111–1118 (2018)
Rasool, K., et al.: Antibacterial Activity of Ti3C2T x MXene. ACS Nano 10(3), 3674–3684 (2016)
Huang, K., et al.: Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47(14), 5109–5124 (2018)
Xue, Q., et al.: Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater. 29(15), 1604847 (2017)
Zhou, L., et al.: Titanium carbide (Ti3C2Tx) MXene: a novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon 118, 50–57 (2017)
Cai, Y., et al.: Diketopyrrolopyrrole–triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy. ACS Nano 11(1), 1054–1063 (2017)
Naunheim, K.S., et al.: Preoperative chemotherapy and radiotherapy for esophageal carcinoma. J. Thorac. Cardiovasc. Surg. 103(5), 887–895 (1992)
Robinson, J.T., et al.: Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133(17), 6825–6831 (2011)
Bashkatov, A., et al.: Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38(15), 2543 (2005)
Li, X., et al.: Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Func. Mater. 25(31), 4929–4947 (2015)
Ross, R.B., et al.: Endohedral fullerenes for organic photovoltaic devices. Nat. Mater. 8(3), 208 (2009)
Arico, A.S., et al.: Nanostructured materials for advanced energy conversion and storage devices. In: Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, pp. 148–159. World Scientific (2011)
Rakhi, R.B., et al.: Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CT x MXene electrodes for supercapacitor applications. Chem. Mater. 27(15), 5314–5323 (2015)
Xie, Y., et al.: Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8(9), 9606–9615 (2014)
Yu, X., et al.: Ti3C2 MXene nanoparticles modified metal oxide composites for enhanced photoelectrochemical water splitting. Int. J. Hydrog. Energy 44(5), 2704–2710 (2019)
Chen, X., et al.: Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sens. Actuators B Chem. (2019)
Yan, D., et al.: A BiVO4 film photoanode with re-annealing treatment and 2D thin Ti3C2TX flakes decoration for enhanced photoelectrochemical water oxidation. Chem. Eng. J. 361, 853–861 (2019)
Peng, X., et al.: Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 43(10), 3303–3323 (2014)
Portet, C., et al.: High power density electrodes for carbon supercapacitor applications. Electrochim. Acta 50(20), 4174–4181 (2005)
Zhang, L.L., Zhou, R., Zhao, X.: Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20(29), 5983–5992 (2010)
Kaempgen, M., et al.: Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9(5), 1872–1876 (2009)
Syamsai, R., Grace, A.N.: Ta4C3 MXene as supercapacitor electrodes. J. Alloy. Compd. 792, 1230–1238 (2019)
Wu, W., et al.: Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials. Ceram. Int. 45(6), 7328–7337 (2019)
Tang, Q., Zhou, Z., Shen, P.: Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916 (2012)
Sun, D., et al.: Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 47, 80–83 (2014)
Wang, Y., et al.: Fe 3 O 4@ Ti 3 C 2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries. J. Mater. Chem. A 6(24), 11189–11197 (2018)
Seh, Z.W., et al.: Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1(3), 589–594 (2016)
Wang, Y., et al.: Graphene/carbon black hybrid film for flexible and high rate performance supercapacitor. J. Power Sources 271, 269–277 (2014)
Yang, C., et al.: All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes. J. Mater. Chem. A 2(5), 1458–1464 (2014)
Gao, H., et al.: Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. ACS Appl. Mater. Interfaces. 4(12), 7020–7026 (2012)
Xu, Y., et al.: Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7(5), 4042–4049 (2013)
Wu, Q., et al.: Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4), 1963–1970 (2010)
Levitt, A.S., et al.: Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A 7(1), 269–277 (2019)
Zhan, C., et al.: Computational discovery and design of MXenes for energy applications: status, successes, and opportunities. ACS Appl. Mater. Interfaces (2019)
Velpula, G., et al.: Graphene meets ionic liquids: fermi level engineering via electrostatic forces. ACS Nano (2019)
Wang, X., et al.: Two-dimensional V4C3 MXene as high performance electrode materials for supercapacitors. Electrochim. Acta 307, 414–421 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Iqbal, M.Z., Siddique, S. (2021). Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis to Applications. In: Mubarak, N.M., Khalid, M., Walvekar, R., Numan, A. (eds) Contemporary Nanomaterials in Material Engineering Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62761-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-62761-4_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62760-7
Online ISBN: 978-3-030-62761-4
eBook Packages: EngineeringEngineering (R0)