Abstract
Water contamination is a significant problem in all over the world, and it is crucial to monitor the contaminating nutrients regularly for keeping the groundwater or drinking water safe. The nitrate ion has a remarkable impact on human health and the environment, and excessive use of this ion might damage the ecological system and the natural environments. Nitrate ions can be detected through various laboratory-based methods or in-situ sensor-based methods to develop a monitoring system. But for the last few years, the Interdigital sensor is used to detect the nitrate ions due to their reasonable fabrication costs and secure sensing mechanism. Some such sensors have high sensitivity with a reasonable limit of detection (LOD). Others might have a reasonable sensitivity with the reduced cost, where the proposed detection method uses a sensor-based portable sensing system. This chapter discusses the different working principles and fabrication methods of the Interdigital sensor for nitrate ions detection in water.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
E. Berner, R. Berner,The Global Water Cycle Prentice Hall,New Jersey (1987)
M.E.E. Alahi, S.C. Mukhopadhyay, Detection methods of nitrate in water: a review. Sens. Actuators, A 280, 210–221 (2018)
H.H. Comly, Cyanosis in infants caused by nitrates in well water. J. Am. Med. Assoc. 129(2), 112–116 (1945)
P. Brimblecombe, D. Stedman, Historical evidence for a dramatic increase in the nitrate component of acid rain. Nature 298(5873), 460–462 (1982)
M.S. Finch, D.J. Hydes, C.H. Clayson, B. Weigl, J. Dakin, P. Gwilliam, A low power ultra violet spectrophotometer for measurement of nitrate in seawater: introduction, calibration and initial sea trials. Anal. Chim. Acta 377(2–3), 167–177 (1998)
M.A. Ferree, R.D. Shannon, Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples. Water Res. 35(1), 327–332 (2001)
M. Abbas, G. Mostafa, Determination of traces of nitrite and nitrate in water by solid phase spectrophotometry. Anal. Chim. Acta 410(1–2), 185–192 (2000)
K.M. Miranda, M.G. Espey, D.A. Wink, A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5(1), 62–71 (2001)
K. Sastry, R. Moudgal, J. Mohan, J. Tyagi, G. Rao, Spectrophotometric determination of serum nitrite and nitrate by copper–cadmium alloy. Anal. Biochem. 306(1), 79–82 (2002)
T.A. Doane, W.R. Horwáth, Spectrophotometric determination of nitrate with a single reagent. Anal. Lett. 36(12), 2713–2722 (2003)
A. Drolc, J. Vrtovšek, Nitrate and nitrite nitrogen determination in waste water using on-line UV spectrometric method. Biores. Technol. 101(11), 4228–4233 (2010)
M.J. Moorcroft, J. Davis, R.G. Compton, Detection and determination of nitrate and nitrite: a review. Talanta 54(5), 785–803 (2001)
A. Dudwadkar, N. Shenoy, J. Joshi, S.D. Kumar, H. Rao, A. Reddy, Application of ion chromatography for the determination of nitrate in process streams of thermal denitration plant. Sep. Sci. Technol. 48(16), 2425–2430 (2013)
X.-H. Pham et al., Electrochemical detection of nitrite using urchin-like palladium nanostructures on carbon nanotube thin film electrodes. Sens. Actuators B: Chem. 193, 815–822 (2014)
X. Wang, Y. Wang, H. Leung, S.C. Mukhopadhyay, M. Tian, J. Zhou, Mechanism and experiment of planar electrode sensors in water pollutant measurement. IEEE Trans. Instrum. Meas. 64(2), 516–523 (2014)
B. Schazmann, D. Diamond, Improved nitrate sensing using ion selective electrodes based on urea–calixarene ionophores. New J. Chem. 31(4), 587–592 (2007)
B.A. Pellerin, B.A. Bergamaschi, B.D. Downing, J.F. Saraceno, J.D. Garrett, L.D. Olsen,Optical techniques for the determination of nitrate in environmental waters: guidelines for instrument selection, operation, deployment, maintenance, quality assurance, and data reporting,US Geological Survey Techniques and Methods, pp. 1–D5, (2013)
A.A. Ensafi, M. Amini, Highly selective optical nitrite sensor for food analysis based on Lauth’s violet–triacetyl cellulose membrane film. Food Chem. 132(3), 1600–1606 (2012)
G. Pandey, R. Kumar, R.J. Weber,Real time detection of soil moisture and nitrates using on-board in-situ impedance spectroscopy, in 2013 IEEE International Conference on Systems, Man, and Cybernetics (IEEE, 2013), pp. 1081–1086
M.E.E. Alahi, S.C. Mukhopadhyay,Interdigitated Senor and Electrochemical Impedance Spectroscopy (EIS),in Smart Nitrate Sensor (Springer, 2019), pp. 43–52
A. Nag, M.E.E. Alahi, S. Feng, S.C. Mukhopadhyay, IoT-based sensing system for phosphate detection using graphite/PDMS sensors. Sens. Actuators, A 286, 43–50 (2019)
A. Nag, S. Mukhopadhyay, J. Kosel,Transparent biocompatible sensor patches for touch sensitive prosthetic limbs,in 2016 10th International Conference on Sensing Technology (ICST) (IEEE, 2016), pp. 1–6
N. Afsarimanesh, M.E.E. Alahi, S.C. Mukhopadhyay, M. Kruger, Development of IoT-based impedometric biosensor for point-of-care monitoring of bone loss. IEEE J. Emerg. Sel. Top. Circuits Syst. 8(2), 211–220 (2018)
N.J. Goldfine, A.P. Washabaugh, J.V. Dearlove, P.A. von Guggenberg,Imposed ω-k magnetometer and dielectrometer applications,in Review of Progress in Quantitative Nondestructive Evaluation (Springer, 1993), pp. 1115–1122
Y. Sheiretov, M. Zahn, Dielectrometry measurements of moisture dynamics in oil-impregnated pressboard. IEEE Trans. Dielectr. Electr. Insul. 2(3), 329–351 (1995)
M.E. Alahi, L. Xie, A.I. Zia, S. Mukhopadhyay, L. Burkitt,Practical nitrate sensor based on electrochemical impedance measurement,in 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings (IEEE, 2016), pp. 1–6
M.E.E. Alahi, X. Li, S. Mukhopadhyay, L. Burkitt,A temperature compensated smart nitrate-sensor for agricultural industry.IEEE Trans. Ind. Electron. (2017)
M.E.E. Alahi, S.C. Mukhopadhyay, L. Burkitt, Imprinted polymer coated impedimetric nitrate sensor for real-time water quality monitoring. Sens. Actuators B: Chem. 259, 753–761 (2018)
M.E.E. Alahi, A. Nag, S.C. Mukhopadhyay, L. Burkitt, A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators, A 269, 79–90 (2018)
M.E.E. Alahi, S.C. Mukhopadhyay,Graphite/PDMS capacitive sensor for nitrate measurement,in Smart Nitrate Sensor (Springer, 2019), pp. 73–89
M.E.E. Alahi, S.C. Mukhopadhyay,Temperature compensation for low concentration nitrate measurement,in Smart Nitrate Sensor (Springer, 2019), pp. 53–72
M.E.E. Alahi, S.C. Mukhopadhyay,Preparation and characterization of the selectivity material of nitrate sensor,in Smart Nitrate Sensor (Springer, 2019), pp. 91–113
M.E.E. Alahi, N. Pereira-Ishak, S.C. Mukhopadhyay, L. Burkitt, An internet-of-things enabled smart sensing system for nitrate monitoring. IEEE Internet Things J. 5(6), 4409–4417 (2018)
A. Azmi, A.A. Azman, S. Ibrahim, M.A.M. Yunus,Techniques in advancing the capabilities of various nitrate detection methods: a review.Int. J. Smart Sens. Intell. Syst. 10(2) (2017)
M. Zaretsky, J. Melcher,Complex permittivity measurements of thin films using microdielectrometry,in Conference on Electrical Insulation & Dielectric Phenomena-Annual Report 1986 (IEEE, 1986), pp. 462–471
N. Goldfine, Y. Sheiretov, A. Washabaugh, V. Zilberstein, S. Kenny, P. Crowther, Materials characterisation and flaw detection for metallic coating repairs. Insight 42(12), 809–814 (2000)
M.E. Van Steenberg, A. Washabaugh, N. Goldfine,Inductive and capacitive sensor arrays for in situ composition sensors,in 2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542), vol. 1 (IEEE, 2001), pp. 1/299–1/309
A.V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Du, M. Zahn, Interdigital sensors and transducers. Proc. IEEE 92(5), 808–845 (2004)
N. Goldfine, V. Zilberstein, J.S. Cargill, D. Schlicker, I. Shay, Meandering winding magnetometer array eddy current sensors for detection of cracks in regions with fretting damage. Mater. Eval. 60(7), 870–877 (2002)
G. Ellis, I. Adatia, M. Yazdanpanah, S.K. Makela, Nitrite and nitrate analyses: a clinical biochemistry perspective. Clin. Biochem. 31(4), 195–220 (1998)
M.A.M. Yunus, S.C. Mukhopadhyay, Novel planar electromagnetic sensors for detection of nitrates and contamination in natural water sources. IEEE Sens. J. 11(6), 1440–1447 (2010)
A.S.M. Nor, M.A.M. Yunus, S.W. Nawawi, S. Ibrahim,Low-cost sensor array design optimization based on planar electromagnetic sensor design for detecting nitrate and sulphate,in 2013 Seventh International Conference on Sensing Technology (ICST) (IEEE, 2013), pp. 693–698
M.A.M. Yunus, S. Mukhopadhyay, A. Punchihewa,Application of independent component analysis for estimating nitrate contamination in natural water sources using planar electromagnetic sensor,in 2011 Fifth International Conference on Sensing Technology (IEEE, 2011), pp. 538–543
N. Herzer, S. Hoeppener, U.S. Schubert, Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates. Chem. Commun. 46(31), 5634–5652 (2010)
S. Khumpuang, H. Maekawa, S. Hara, Photolithography for minimal fab system. IEEJ Trans. Sens. Micromachines 133(9), 272–277 (2013)
D.J. Harris, H. Hu, J.C. Conrad, J.A. Lewis, Patterning colloidal films via evaporative lithography. Phys. Rev. Lett. 98(14), 148301 (2007)
A. Nag, A.I. Zia, X. Li, S.C. Mukhopadhyay, J. Kosel, Novel sensing approach for LPG leakage detection: Part I—operating mechanism and preliminary results. IEEE Sens. J. 16(4), 996–1003 (2016)
H.S. Lee, J.-B. Yoon, A simple and effective lift-off with positive photoresist. J. Micromech. Microeng. 15(11), 2136 (2005)
S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi, T. Kanamori, Photoresponsive polymer gel microvalves controlled by local light irradiation. Sens. Actuators, A 140(2), 176–184 (2007)
Photoresists. https://www.photochembgsu.com/applications/photoresists.html
E. Barborini et al., Batch fabrication of metal oxide sensors on micro-hotplates. J. Micromech. Microeng. 18(5), 055015 (2008)
P. Data,SU-8 Developer
D. Zhuang, J. Edgar, Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng.: R: Rep. 48(1), 1–46 (2005)
R.A. Powell, Dry Etching for Microelectronics (Elsevier, 2012)
S. Ohta, S. Komagata, J. Seki, T. Saeki, S. Morishita, T. Asaoka, All-solid-state lithium ion battery using garnet-type oxide and Li 3 BO 3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53–56 (2013)
S. Khan, L. Lorenzelli, R. Dahiya,Bendable piezoresistive sensors by screen printing MWCNT/PDMS composites on flexible substrates,in 2014 10th Conference on Ph. D. Research in Microelectronics and Electronics (PRIME) (IEEE, 2014), pp. 1–4
Meshed screen printing. https://www.polyestermeshfabric.com/technology/use-screen-printing.html
S. Merilampi, T. Laine-Ma, P. Ruuskanen, The characterization of electrically conductive silver ink patterns on flexible substrates. Microelectron. Reliab. 49(7), 782–790 (2009)
J. Ping, J. Wu, Y. Wang, Y. Ying, Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens. Bioelectron. 34(1), 70–76 (2012)
D.A. Pardo, G.E. Jabbour, N. Peyghambarian, Application of screen printing in the fabrication of organic light-emitting devices. Adv. Mater. 12(17), 1249–1252 (2000)
I. Locher, G. Tröster, Screen-printed textile transmission lines. Text. Res. J. 77(11), 837–842 (2007)
A.C. Siegel, S.T. Phillips, M.D. Dickey, N. Lu, Z. Suo, G.M. Whitesides, Foldable printed circuit boards on paper substrates. Adv. Func. Mater. 20(1), 28–35 (2010)
A. Nag, S.C. Mukhopadhyay, J. Kosel, Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring. Sens. Actuators, A 251, 148–155 (2016)
A. Nag, S.C. Mukhopadhyay, J. Kosel, Tactile sensing from laser-ablated metallized PET films. IEEE Sens. J. 17(1), 7–13 (2016)
J.A. Barron, B.R. Ringeisen, H. Kim, B.J. Spargo, D.B. Chrisey, Application of laser printing to mammalian cells. Thin Solid Films 453, 383–387 (2004)
A.J. Birnbaum, H. Kim, N.A. Charipar, A. Piqué, Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices. Appl. Phys. A Mater. Sci. Process. 99(4), 711–716 (2010)
S.Z. Hossain et al., Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol− gel-derived bioinks. Anal. Chem. 81(13), 5474–5483 (2009)
C.M. Homenick et al., Fully printed and encapsulated SWCNT-based thin film transistors via a combination of R2R gravure and inkjet printing. ACS Appl. Mater. Interfaces 8(41), 27900–27910 (2016)
M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing—process and its applications. Adv. Mater. 22(6), 673–685 (2010)
Inkjet printing. https://www.ikts.fraunhofer.de/en/departments/energy_bio-medical_technology/materials_and_components/HT_ElectrochemistryCatalysis/material_inks.html
W. Shen, X. Zhang, Q. Huang, Q. Xu, W. Song, Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6(3), 1622–1628 (2014)
S. Wang et al., Inkjet printing of conductive patterns and supercapacitors using a multi-walled carbon nanotube/Ag nanoparticle based ink. J. Mater. Chem. A 3(5), 2407–2413 (2015)
Y. Farraj, M. Grouchko, S. Magdassi, Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics. Chem. Commun. 51(9), 1587–1590 (2015)
V. Eswaraiah, K. Balasubramaniam, S. Ramaprabhu, Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring. J. Mater. Chem. 21(34), 12626–12628 (2011)
L. Lin et al., Transparent flexible nanogenerator as self-powered sensor for transportation monitoring. Nano Energy 2(1), 75–81 (2013)
G. Latessa, F. Brunetti, A. Reale, G. Saggio, A. Di Carlo, Piezoresistive behaviour of flexible PEDOT: PSS based sensors. Sens. Actuators B: Chem. 139(2), 304–309 (2009)
S. Takamatsu, T. Imai, T. Yamashita, T. Kobayashi, K. Miyake, T. Itoh,Flexible fabric keyboard with conductive polymer-coated fibers,in Sensors, 2011 IEEE (IEEE, 2011), pp. 659–662
N. Chen, J. Engel, S. Pandya, C. Liu,Flexible skin with two-axis bending capability made using weaving-by-lithography fabrication method,in MEMS 2006 Istanbul. 19th IEEE International Conference on Micro Electro Mechanical Systems, 2006 (IEEE, 2006), pp. 330–333
J.B. Lee, V. Subramanian, Weave patterned organic transistors on fiber for E-textiles. IEEE Trans. Electron Devices 52(2), 269–275 (2005)
K. Cherenack, C. Zysset, T. Kinkeldei, N. Münzenrieder, G. Tröster, Woven electronic fibers with sensing and display functions for smart textiles. Adv. Mater. 22(45), 5178–5182 (2010)
Weavers Turn Silk Into Diabetes Test Strips. https://www.npr.org/sections/goatsandsoda/2015/01/08/375442225/weavers-turn-silk-into-diabetes-test-strips
U. Briedis, A. Valisevskis, M. Grecka, Development of a smart garment prototype with enuresis alarm using an embroidery-machine-based technique for the integration of electronic components. Procedia Comput. Sci. 104, 369–374 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Alahi, M.E.E. et al. (2021). Recent Advancement of Interdigital Sensor for Nitrate Monitoring in Water. In: Mukhopadhyay, S.C., George, B., Roy, J.K., Islam, T. (eds) Interdigital Sensors. Smart Sensors, Measurement and Instrumentation, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-62684-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-62684-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62683-9
Online ISBN: 978-3-030-62684-6
eBook Packages: EngineeringEngineering (R0)