Skip to main content

Graph Neural Networks for Human-Aware Social Navigation

  • Conference paper
  • First Online:
Advances in Physical Agents II (WAF 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1285))

Included in the following conference series:

Abstract

Autonomous navigation is a key skill for assistive and service robots. To be successful, robots have to comply with social rules, such as avoiding the personal spaces of the people surrounding them, or not getting in the way of human-to-human and human-to-object interactions. This paper suggests using Graph Neural Networks to model how inconvenient the presence of a robot would be in a particular scenario according to learned human conventions so that it can be used by path planning algorithms. To do so, we propose two automated scenario-to-graph transformations and benchmark them with different Graph Neural Networks using the SocNav1 dataset  [1]. We achieve close-to-human performance in the dataset and argue that, in addition to its promising results, the main advantage of the approach is its scalability in terms of the number of social factors that can be considered and easily embedded in code in comparison with model-based approaches. The code used to train and test the resulting graph neural network is available in a public repository.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/robocomp/sngnn.

References

  1. Manso, L.J., Nuñez, P., Calderita, L.V., Faria, D.R., Bachiller, P.: SocNav1: a dataset to benchmark and learn social navigation conventions. Data 5(1), 7 (2020). https://www.mdpi.com/2306-5729/5/1/7

    Article  Google Scholar 

  2. Pacchierotti, E., Christensen, H.I., Jensfelt, P.: Human-robot embodied interaction in hallway settings: a pilot user study. In: IEEE International Workshop on Robot and Human Interactive Communication, vol. 2005, pp. 164–171. IEEE (2005). https://doi.org/10.1109/ROMAN.2005.1513774

  3. Hansen, S.T., Svenstrup, M., Andersen, H.J., Bak, T.: Adaptive human aware navigation based on motion pattern analysis. In: Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, pp. 927–932 (2009). https://doi.org/10.1109/ROMAN.2009.5326212

  4. Cosley, D., Baxter, J., Lee, S., Alson, B., Nomura, S., Adams, P., Sarabu, C., Gay, G.: A tag in the hand: supporting semantic, social, and spatial navigation in museums. In: Proceedings of the 27th International Conference on Human Factors in Computing Systems (CHI 2009), pp. 1953–1962 (2009). https://doi.org/10.1145/1518701.1518999

  5. Bhatt, M., Dylla, F.: A qualitative model of dynamic scene analysis and interpretation in ambient intelligence systems. Int. J. Robot. Autom. 24(3), 1–18 (2010). https://doi.org/10.2316/journal.206.2009.3.206-3274

    Article  Google Scholar 

  6. Vega, A., Manso, L.J., Macharet, D.G., Bustos, P., Núñez, P.: Socially aware robot navigation system in human-populated and interactive environments based on an adaptive spatial density function and space affordances. Pattern Recogn. Lett. 118, 72–84 (2019). https://doi.org/10.1016/j.patrec.2018.07.015

    Article  Google Scholar 

  7. Rios-Martinez, J., Spalanzani, A., Laugier, C.: From proxemics theory to socially-aware navigation: a survey. Int. J. Soc. Robot. 7(2), 137–153 (2015). https://doi.org/10.1007/s12369-014-0251-1

    Article  Google Scholar 

  8. Charalampous, K., Kostavelis, I., Gasteratos, A.: Recent trends in social aware robot navigation: a survey. Robot. Auton. Syst. 93, 85–104 (2017). https://doi.org/10.1016/j.robot.2017.03.002

    Article  Google Scholar 

  9. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995). https://doi.org/10.1103/PhysRevE.51.4282

    Article  Google Scholar 

  10. Ferrer, G., Garrell, A., Sanfeliu, A.: Social-aware robot navigation in urban environments. In: 2013 European Conference on Mobile Robots, ECMR 2013 - Conference Proceedings, pp. 331–336 (2013). https://doi.org/10.1109/ECMR.2013.6698863

  11. Patompak, P., Jeong, S., Nilkhamhang, I., Chong, N.Y.: Learning proxemics for personalized human-robot social interaction. Int. J. Soc. Robot. (2019). https://doi.org/10.1007/s12369-019-00560-9

    Article  Google Scholar 

  12. Ramon-Vigo, R., Perez-Higueras, N., Caballero, F., Merino, L.: Transferring human navigation behaviors into a robot local planner. In: IEEE RO-MAN 2014 - 23rd IEEE International Symposium on Robot and Human Interactive Communication: Human-Robot Co-Existence: Adaptive Interfaces and Systems for Daily Life, Therapy, Assistance and Socially Engaging Interactions, pp. 774–779 (2014). https://doi.org/10.1109/ROMAN.2014.6926347

  13. Vasquez, D., Okal, B., Arras, K.O.: Inverse reinforcement learning algorithms and features for robot navigation in crowds: an experimental comparison. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 1341–1346 (2014). https://doi.org/10.1109/IROS.2014.6942731

  14. Chen, Y.F., Everett, M., Liu, M., How, J.P.: Socially aware motion planning with deep reinforcement learning. In: IEEE International Conference on Intelligent Robots and Systems, September 2017, pp. 1343–1350 (2017). https://doi.org/10.1109/IROS.2017.8202312

  15. Chen, C., Liu, Y., Kreiss, S., Alahi, A.: Crowd-robot interaction: crowd-aware robot navigation with attention-based deep reinforcement learning. In: International Conference on Robotics and Automation (ICRA), pp. 6015–6022. IEEE (2019). http://arxiv.org/abs/1809.08835

  16. Martins, G.S., Rocha, R.P., Pais, F.J., Menezes, P.: Clusternav: learning-based robust navigation operating in cluttered environments. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 9624–9630. IEEE (2019)

    Google Scholar 

  17. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  18. Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C., Song, F., Ballard, A., Gilmer, J., Dahl, G., Vaswani, A., Allen, K., Nash, C., Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M., Vinyals, O., Li, Y., Pascanu, R.: Relational inductive biases, deep learning, and graph networks, pp. 1–40 (2018). https://doi.org/10.1017/S0031182005008516, http://arxiv.org/abs/1806.01261

  19. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. In: Advances in Neural Information Processing Systems, pp. 4800–4810 (2018)

    Google Scholar 

  20. Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEE Trans. Neural Netw. 8(3), 1–22 (1997)

    Article  Google Scholar 

  21. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2, pp. 729–734 (2005). https://doi.org/10.1109/IJCNN.2005.1555942

  22. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009). https://doi.org/10.1109/TNN.2008.2005605

    Article  Google Scholar 

  23. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks, no. 1, pp. 1–20 (2015). arXiv: 1511.05493

  24. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks, pp. 1–14 (2016). arXiv:1609.02907

  25. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol. 10843, no. 1, pp. 593–607 (2018). https://doi.org/10.1007/978-3-319-93417-4_38

  26. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of the International Conference on Learning Representations 2018, 2015, pp. 1–11 (2018). http://arxiv.org/abs/1710.10903

  27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  28. Wang, M., Yu, L., Zheng, D., Gan, Q., Gai, Y., Ye, Z., Li, M., Zhou, J., Huang, Q., Ma, C., Huang, Z., Guo, Q., Zhang, H., Lin, H., Zhao, J., Li, J., Smola, A., Zhang, Z.: Deep graph library: towards efficient and scalable deep learning on graphs. In: ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds (RLGM), pp. 1–7 (2019)

    Google Scholar 

  29. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  30. Kirby, R., Simmons, R., Forlizzi, J.: Companion: a constraint-optimizing method for person-acceptable navigation. In: RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 607–612. IEEE (2009)

    Google Scholar 

  31. Cruz-maya, A.: Enabling socially competent navigation through incorporating HRI, pp. 9–12. arXiv: 1904.09116v1 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis J. Manso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manso, L.J., Jorvekar, R.R., Faria, D.R., Bustos, P., Bachiller, P. (2021). Graph Neural Networks for Human-Aware Social Navigation. In: Bergasa, L.M., Ocaña, M., Barea, R., López-Guillén, E., Revenga, P. (eds) Advances in Physical Agents II. WAF 2020. Advances in Intelligent Systems and Computing, vol 1285. Springer, Cham. https://doi.org/10.1007/978-3-030-62579-5_12

Download citation

Publish with us

Policies and ethics