Skip to main content

Key Recovery Under Plaintext Checking Attack on LAC

  • Conference paper
  • First Online:
Provable and Practical Security (ProvSec 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12505))

Included in the following conference series:

Abstract

The National Institute of Standards and Technology (NIST) is working on the standardization of post-quantum algorithms. In February 2019, NIST announced 26 candidate post-quantum cryptosystems had entered the Round 2. Prior work has shown how to mount key recovery attacks on several candidates like FrodoKEM, NewHope, and Kyber, but their methods do not work for LAC, which uses a different encoding scheme and rounding method. To address this gap, we describe a powerful new attack on LAC. In particular, we propose a simple and effective method to recover the reused secret key of LAC.CPA. Following the method we show that, using the recommended parameters, thousands of queries are sufficient to recover the full secret key with a 100% probability, which is verified by experiments. Since LAC.KE is based on LAC.CPA, our method can be used to assess the key-reuse resilience of LAC.KE. In particular, if Alice reuses a secret key, Bob can recover it by communicating with Alice thousands of times. Since LAC is a Round 2 candidate in the NIST PQ process, the presented result may well have a high impact on the understanding of this important cryptosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    B\(\breve{\text {a}}\)etu et al. also recovered the reused secret keys of the other 8 IND-CPA PKEs, but these schemes did not advance to the second round.

  2. 2.

    In implementation of LAC, in order to minimize the size of the ciphertext, the lower 4 bits for each coefficient in \(\mathbf{v} \) are discarded, and each coefficient is enlarged by shifting 4 bits to the left when decrypting.

  3. 3.

    In the paper, they recovered the reused secret key of NewHope-CPA-KEM by querying a key mismatch oracle, which can be regarded as an adaptive variant of the plaintext checking oracle in KEM or key exchange.

  4. 4.

    In the paper, they proposed an efficient key mismatch attack on Kyber.CCAKEM. However, they replaced oracle \(\mathcal {O}\) with oracle \(\mathcal {O}_m\) in the attack, where these two oracles are not equivalent. In fact, they presented a new method to recover the reused secret key of Kyber.CPAPKE.

  5. 5.

    ECCEnc(m) is chosen to be \(0^{l_v}\) for ease of explanation. In fact, it’s ok to randomly choose m and generate ECCEnc(m), which will be explained further later.

  6. 6.

    Recall that in KR-PCA game, when querying the oracle PCO, the oracle return \(1_{m'=m}\) or \(0_{m'\ne m}\).

  7. 7.

    In LAC.KE, shared secret is usually used to generate symmetric keys that Alice and Bob would use to communicate. Bob can generate his symmetric keys based on his shared secret K; if Alice is able to decrypt (and respond) based on those keys, then (with high probability) Bob’s shared key K matches Alice’s shared key \(K'\); if Alice rejects, then Bob’s shared key K mismatches Alice’s shared key \(K'\), which is why the attack is called key mismatch attack [2, 12, 18].

References

  1. Fluhrer, S.R.: Cryptanalysis of ring-LWE based key exchange with key share reuse. IACR Cryptol. ePrint Arch. 2016, 85 (2016)

    Google Scholar 

  2. Qin, Y., Cheng, C., Ding, J.: A complete and optimized key mismatch attack on NIST candidate NewHope. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 504–520. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0_24

    Chapter  Google Scholar 

  3. Ding, J., Fluhrer, S., Rv, S.: Complete attack on RLWE key exchange with reused keys, without signal leakage. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 467–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_27

    Chapter  Google Scholar 

  4. Ding, J., Alsayigh, S., Saraswathy, R.V., et al.: Leakage of signal function with reused keys in RLWE key exchange. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2017)

    Google Scholar 

  5. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

    Google Scholar 

  6. Băetu, C., Durak, F.B., Huguenin-Dumittan, L., Talayhan, A., Vaudenay, S.: Misuse attacks on post-quantum cryptosystems. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 747–776. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_26

    Chapter  Google Scholar 

  7. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  8. Micciancio, D.: Lattice-based cryptography. In: Tilborg, H.C.V., Jajodia, S. (eds.) Encyclopedia of Cryptography and Security, pp. 713–715. Springer, Boston (2011). https://doi.org/10.1007/978-3-540-88702-7_5

    Chapter  Google Scholar 

  9. Regev, O.: Lattice-based cryptography. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 131–141. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_8

    Chapter  Google Scholar 

  10. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based on the learning with errors problem. IACR Cryptol. EPrint Arch. 2012, 688 (2012)

    Google Scholar 

  11. Bos, J., Ducas, L., Kiltz, E., et al.: CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. In: IEEE European Symposium on Security and Privacy (EuroS&P), pp. 353–367. IEEE (2018)

    Google Scholar 

  12. Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the Key-Reuse Resilience of NewHope. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 272–292. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_14

    Chapter  Google Scholar 

  13. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-014-9938-4

    Article  MathSciNet  MATH  Google Scholar 

  14. National institute of standards and technology: post-quantum cryptography round 1 submissions (2018). https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

  15. National institute of standards and technology: post-quantum cryptography round 2 submissions (2018). https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions

  16. Guo, Q., Johansson, T., Yang, J.: A novel CCA attack using decryption errors against LAC. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 82–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_4

    Chapter  Google Scholar 

  17. Kirkwood, D., Lackey, B.C., McVey, J., et al.: Failure is not an option: standardization issues for post-quantum key agreement. Talk at NIST workshop on cybersecurity in a post-quantum world (2015). http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm

  18. Qin, Y., Cheng, C., Ding, J.: An efficient key mismatch attack on the NIST second round candidate Kyber. IACR Cryptol. ePrint Arch. 2019, 1343 (2019)

    Google Scholar 

  19. Saarinen, M.-J.O.: HILA5: on reliability, reconciliation, and error correction for ring-LWE encryption. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 192–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_10

    Chapter  Google Scholar 

  20. Alkim, E., et al.: NewHope: algorithm specifcations and supporting documentation (2017). https://newhopecrypto.org/data/NewHope2018_12_02.pdf

  21. Gao, X., Ding, J., Li, L., et al.: Practical randomized RLWE-based key exchange against signal leakage attack. IEEE Trans. Comput. 1, 1–1 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Liu, C., Zheng, Z., Zou, G.: Key reuse attack on NewHope key exchange protocol. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 163–176. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4_11

    Chapter  Google Scholar 

  23. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 34 (2009)

    Article  MathSciNet  Google Scholar 

  24. Bernstein, D.J., Groot Bruinderink, L., Lange, T., Panny, L.: HILA5 Pindakaas: on the CCA security of lattice-based encryption with error correction. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 203–216. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_12

    Chapter  Google Scholar 

  25. Alkim, E., Ducas, L., P\(\rm \ddot{o}\)ppelmann, T., et al.: Post-quantum key exchange-a new hope. In: USENIX Security Symposium (2016)

    Google Scholar 

  26. Bernstein, D.J.: Introduction to post-quantum cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 1–14. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_1

    Chapter  MATH  Google Scholar 

  27. National institute of standards and technology: announcing request for nominations for public-key post-quantum cryptographic algorithms (2016). https://csrc:nist:gov/news/2016/public-key-post-quantum-cryptographic-algorithms

  28. Buchmann, J., Ding J.: PQCrypto, Post-quantum cryptography. In: Second International Workshop, pp. 17–19 (2008)

    Google Scholar 

  29. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  30. Wang, K., Jiang, H.: Analysis of two countermeasures against the signal leakage attack. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 370–388. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23696-0_19

    Chapter  Google Scholar 

  31. D’Anvers, J.-P., Guo, Q., Johansson, T., Nilsson, A., Vercauteren, F., Verbauwhede, I.: Decryption failure attacks on IND-CCA secure lattice-based schemes. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 565–598. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_19

  32. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key cryptosystem. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 2–12. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-0_2

    Chapter  Google Scholar 

  33. Verheul, E.R., Doumen, J.M., van Tilborg, H.C.A.: Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the McEliece public-key cryptosystem. In: Blaum, M., Farrell, P.G., van Tilborg, H.C.A. (eds.) Information, Coding and Mathematics, pp. 99–119. Springer, Boston (2002). https://doi.org/10.1007/978-1-4757-3585-7_7

    Chapter  Google Scholar 

  34. D’Anvers, J.-P., Vercauteren, F., Verbauwhede, I.: The impact of error dependencies on ring/Mod-LWE/LWR based schemes. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 103–115. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_6

    Chapter  Google Scholar 

  35. Ding, J., Cheng, C., Qin, Y.: A simple key reuse attack on LWE and ring LWE encryption schemes as key encapsulation mechanisms (KEMs). IACR Cryptol. ePrint Arch. 2019, 271 (2019)

    Google Scholar 

  36. Greuet, A., Montoya, S., Renault, G.: Attack on LAC key exchange in misuse situation. IACR Cryptol. ePrint Arch. 2020, 063 (2020)

    Google Scholar 

  37. Dumittan, L.H., Vaudenay, S.: Classical misuse attacks on NIST round 2 PQC: the power of rank-based schemes. IACR Cryptol. ePrint Arch. 2020, 409 (2020)

    Google Scholar 

  38. Okada, S., Wang, Y., Takagi, T.: Improving key mismatch attack on NewHope with fewer queries. IACR Cryptol. ePrint Arch. 2020, 585 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No. 2017YFB0802000), the National Natural Science Foundation of China (No. U1536205, 61802376).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Wang .

Editor information

Editors and Affiliations

Appendix A

Appendix A

A.1 RLWE Problems

Decisional Ring Learning with Errors (RLWE)  [7]. Let n, q be positive integers, and \(\chi _s,\chi _e\) be distributions over R. Distinguish the following two distributions: \(D_0\): \((\mathbf{a} ,\mathbf{b} )\) and \(D_1\): \((\mathbf{a} ,\mathbf{u} )\), where \(\mathbf{b} =\mathbf{as} +\mathbf{e} \) for \(\mathbf{a} \xleftarrow {\$}R_q\), \(\mathbf{s} \xleftarrow {\$}\chi _s\) and \(\mathbf{e} \xleftarrow {\$}\chi _e\), and \(\mathbf{u} \xleftarrow {\$}R_q\).

A.2 Cryptographic Definitions

A public key encryption scheme PKE is a tuple of algorithms (KeyGen, Enc, Dec):

  • KeyGen() \( \rightarrow \) (pk, sk): A probabilistic key generation algorithm that outputs a public key pk and a secret key sk.

  • Enc(m , pk) \(\rightarrow \) ct: A probabilistic encryption algorithm that takes as input a message m and public key pk, and outputs a ciphertext ct. The deterministic form is denoted as Enc(m , pk, r) \(\rightarrow \) ct, where the randomness r is passed as an explicit input.

  • Dec(ct, sk) \(\rightarrow \) \(m'\): A deterministic decryption algorithm that takes as input a ciphertext ct and secret key sk, and outputs a message \(m'\).

We use the notion of indistinguishability under chosen plaintext attacks (IND-CPA) to define the advantage of an adversary A by:

A.3 Notations

Samp is an abstract algorithm which samples a random variable according to a distribution with a given seed: \(x \xleftarrow {} \textsf {Samp}(D,\textsf {seed})\), where D is a distribution, and seed is the random seed used to sample x. For an empty seed \(\epsilon \), the process \(x \xleftarrow {} \textsf {Samp}(D,\epsilon )\) is the same as \(x \xleftarrow {\$} D\). \(B_{\eta }^h\) is a n-ary centered binomial distribution with fixed Hamming weight. For a random variable according to the distribution, its Hamming weight is fixed to the expectation h, and the numbers of both 1’s and −1’s are h/2, the number of 0 is \(n - h\). ECCEnc and ECCDec are the encoding and decoding of the error correction codes, which switch between a message \(m \in \{0,1\}^{l_m}\) and its encoding \(\widehat{m} \in \{0,1\}^{l_v}\), where \(l_v\) is a positive integer denoting the length of the encoding. \((\cdot )_{l_v}\) is a function that inputs a polynomial and outputs the first \(l_v\) coefficients of the polynomial. For an element \(x \in \mathbb {Q}\) we denote by \(\lfloor x \rceil \) rounding of x to the closest integer with ties being rounded up.

A.4 Parameters

The main parameters of the LAC.CPA are integers \(n, q, \eta , l_m, l_v, l_t,h\), where n, q are the parameters of the polynomial ring \(R_q\), \(\eta \) is the parameter of the centered binomial distribution \(B_{\eta }\), \(l_m\) and \(l_v\) are the length of the message and the encoding, respectively, \(l_t\) is the maximum number of errors that can be corrected by error correcting code, h is the hamming weight of the centered binomial distribution. LAC.CPA recommends 3 parameter sets: LAC-128, LAC-192, LAC-256. Throughout these parameter sets q is always 251, \(l_m\) is always 256. The values of n, \(\eta \), \(l_v\) and h vary for different security levels. In particular,

  • In LAC-128, \(n=512\), \(\eta =1\), \(l_v=l_m+18\times 8\), \(h=\frac{n}{2}\).

  • In LAC-192, \(n=1024\), \(\eta =\frac{1}{2}\), \(l_v=l_m+9\times 8\), \(h=\frac{n}{4}\).

  • In LAC-256, \(n=1024\), \(\eta =1\), \(l_v=l_m+18\times 8\), \(h=\frac{n}{2}\).

The centered binomial distribution \(B_{\eta }\) with \(\eta = \frac{1}{2}\) is defined as follows: \(\text {sample}\ (a,b)\leftarrow (B_{1},B_{1})\ \text {and output} \ a\times b,\) and the samples are in the interval \([-1, 1]\).

A.5 Discarding the Lower 4 Bits of Each Coefficient of v in LAC-256.

When the lower 4 bits for each coefficient in \(\mathbf{v} \) are discarded in the algorithm of LAC.CPA.Enc, \(\mathbf{v} _j\) has 16 possible values and they are \(k, k=0,1,...,15.\) In order to carry out the attack, the attacker constructs \(\mathbf{v} _3\sim \mathbf{v} _8\) as follows:

$$ \mathbf{v} ^3_j = \left\{ \begin{array}{rcl} 3, &{} &{} j = 0,l_v\\ 2, &{} &{} j \in \bar{I_0}\\ 10, &{} &{} j \in \hat{I_0}\\ 10, &{} &{} j \in \bar{I_1}\\ 2, &{} &{} j \in \hat{I_1},\\ \end{array} \right. \ \ \ \ \ \mathbf{v} ^4_j = \left\{ \begin{array}{rcl} 3, &{} &{} j = 0,l_v\\ 2, &{} &{} j \in \bar{I_0}\\ 10, &{} &{} j \in \hat{I_0}\\ 10, &{} &{} j \in \bar{I_1}\\ 2, &{} &{} j \in \hat{I_1},\\ \end{array} \right. \ \ \ \ \ \mathbf{v} ^5_j = \left\{ \begin{array}{rcl} 12, &{} &{} j = 0,l_v\\ 2, &{} &{} j \in \bar{I_0}\\ 10, &{} &{} j \in \hat{I_0}\\ 10, &{} &{} j \in \bar{I_1}\\ 2, &{} &{} j \in \hat{I_1},\\ \end{array} \right. $$
$$\mathbf{v} ^6_j = \left\{ \begin{array}{rcl} 12, &{} &{} j = 0,l_v\\ 2, &{} &{} j \in \bar{I_0}\\ 10, &{} &{} j \in \hat{I_0}\\ 10, &{} &{} j \in \bar{I_1}\\ 2, &{} &{} j \in \hat{I_1},\\ \end{array} \right. \ \ \ \ \ \mathbf{v} ^7_j = \left\{ \begin{array}{rcl} 12, &{} &{} j = 0\\ 4, &{} &{} j = l_v\\ 2, &{} &{} j \in \bar{I_0}\\ 10, &{} &{} j \in \hat{I_0}\\ 10, &{} &{} j \in \bar{I_1}\\ 2, &{} &{} j \in \hat{I_1},\\ \end{array} \right. \ \ \ \ \ \mathbf{v} ^8_j = \left\{ \begin{array}{rcl} 11, &{} &{} j = 0\\ 4, &{} &{} j = l_v\\ 2, &{} &{} j \in \bar{I_0}\\ 10, &{} &{} j \in \hat{I_0}\\ 10, &{} &{} j \in \bar{I_1}\\ 2, &{} &{} j \in \hat{I_1}.\\ \end{array} \right. $$

The attacker queries the oracle \(\textsf {PCO}\) with (\(\textsf {ct}=(\frac{q}{16},\mathbf{v} ^3), m)\) to determine that \(\mathbf{s} _0 + \mathbf{s} _{l_v} = -2\), and queries the oracle \(\textsf {PCO}\) with (\(\textsf {ct}=(\frac{2q}{17},\mathbf{v} ^4), m)\) to further determine that \(\mathbf{s} _0 + \mathbf{s} _{l_v} = -1\). When he queries the oracle \(\textsf {PCO}\) with (\(\textsf {ct}=(\frac{q}{34},\mathbf{v} ^5), m)\), he can further determine that \(\mathbf{s} _0 + \mathbf{s} _{l_v} = 2\). When he queries the oracle \(\textsf {PCO}\) with (\(\textsf {ct}=(\frac{2q}{17},\mathbf{v} ^6), m)\), he can further determine that \(\mathbf{s} _0 + \mathbf{s} _{l_v} = 1\). When querying the oracle \(\textsf {PCO}\) with (\(\textsf {ct}=(\frac{q}{16},\mathbf{v} ^7), m)\), he can determine if \(\mathbf{s} _0 - \mathbf{s} _{l_v} = 1\) or \(-1\), and if \(\mathbf{s} _0 - \mathbf{s} _{l_v} = 2\) or \(-2 (0)\). When querying the oracle \(\textsf {PCO}\) with (\(\textsf {ct}=(\frac{q}{16},\mathbf{v} ^8), m)\), he can determine if \(\mathbf{s} _0 - \mathbf{s} _{l_v} = -2\) or 0.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, K., Zhang, Z., Jiang, H. (2020). Key Recovery Under Plaintext Checking Attack on LAC. In: Nguyen, K., Wu, W., Lam, K.Y., Wang, H. (eds) Provable and Practical Security. ProvSec 2020. Lecture Notes in Computer Science(), vol 12505. Springer, Cham. https://doi.org/10.1007/978-3-030-62576-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62576-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62575-7

  • Online ISBN: 978-3-030-62576-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics