Skip to main content

Modeling Narrative Structures in Logical Overlays on Top of Knowledge Repositories

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12400)


An important part of the scientific discourse is the exchange of knowledge in the form of stringent, well-arranged, and interconnected arguments. These ‘scientific storylines’ allow to put central entities, observations, experiments, etc. into perspective and thus ease the understanding of underlying mechanisms, dependencies, or theories. Moreover, taking a bird’s eye view allows to discern recurring narrative patterns that have proven helpful for validating, comparing, and fusing information across individual publications and even between disciplines. However, current knowledge repositories still struggle with representing such information in a structured way. This is because narratives do not only contain factual bits of information, but also parts like temporal developments, causal dependencies, etc. In this paper, we present an innovative conceptual model using a logical overlay structure to bridge the gaps between individual types of knowledge repositories. We also explain how narrative bindings validate modeled narratives in the sense of provenance. In brief, narrative overlays plus adequate bindings allow to effectively fuse knowledge and improve retrieval and discovery tasks by structurally aligning underlying repositories only driven by some narrative. Finally, we practically demonstrate the usefulness of our model by applying it to a scientific narrative in the PubMed bio-medical collection.


  • Narratives
  • Logical overlays
  • Knowledge graphs

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-62522-1_18
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-62522-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.


  1. 1.

  2. 2.

  3. 3.


  1. Auer, S., Kovtun, V., Prinz, M., Kasprzik, A., Stocker, M., Vidal, M.E.: Towards a knowledge graph for science. In: Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics, pp. 1–6, WIMS 2018, ACM (2018).

  2. Chambers, N., Jurafsky, D.: Unsupervised learning of narrative event chains. In: Proceedings of ACL-08: HLT, pp. 789–797 (2008)

    Google Scholar 

  3. Chang, D.-S., Choi, K.-S.: Causal relation extraction using cue phrase and lexical pair probabilities. In: Su, K.-Y., Tsujii, J., Lee, J.-H., Kwong, O.Y. (eds.) IJCNLP 2004. LNCS (LNAI), vol. 3248, pp. 61–70. Springer, Heidelberg (2005).

    CrossRef  Google Scholar 

  4. Habernal, I., Gurevych, I.: Argumentation mining in user-generated web discourse. Comput. Linguist. 43, 125–179 (2017).

    MathSciNet  CrossRef  Google Scholar 

  5. Hauser, M.D., Chomsky, N., Fitch, W.T.: The faculty of language: what is it, who has it, and how did it evolve? Science 298, 1569–1579 (2002).

    CrossRef  Google Scholar 

  6. Hernández, D., Hogan, A., Krötzsch, M.: Reifying RDF: what works well with wikidata? In: Proceedings of the 11th International Workshop on Scalable Semantic Web Knowledge Base Systems, CEUR Workshop Proceedings, vol. 1457, pp. 32–47. (2015)

    Google Scholar 

  7. Kroll, H., Kalo, J.-C., Nagel, D., Mennicke, S., Balke, W.-T.: Context-compatible information fusion for scientific knowledge graphs. In: Hall, M., Merčun, T., Risse, T., Duchateau, F. (eds.) TPDL 2020. LNCS, vol. 12246, pp. 33–47. Springer, Cham (2020).

    CrossRef  Google Scholar 

  8. Li, B., Lee-Urban, S., Johnston, G., Riedl, M.: Story generation with crowdsourced plot graphs. In: 27th AAAI Conference on Artificial Intelligence (2013).

  9. Manola, F., Miller, E., McBride, B., et al.: Rdf primer. W3C recommendation 10(1–107), p. 6 (2004)

    Google Scholar 

  10. Mochales, R., Moens, M.F.: Argumentation mining. Artif. Intell. Law 19, 1–22 (2011).

    CrossRef  Google Scholar 

  11. Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like RDF reification?: making statements about statements using singleton property. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 759–770, WWW 2014, ACM (2014).

  12. Spangler, S., Wilkins, A.D., Bachman, B.J., Nagarajan, M., Dayaram, T., Haas, P., et al.: Automated hypothesis generation based on mining scientific literature. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1877–1886. KDD 2014, ACM (2014).

  13. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cambridge (1958)

    Google Scholar 

  14. Wylot, M., Cudré-Mauroux, P., Hauswirth, M., Groth, P.: Storing, tracking, and querying provenance in linked data. IEEE Trans. Knowl. Data Eng. 29, 1751–1764 (2017).

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hermann Kroll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kroll, H., Nagel, D., Balke, WT. (2020). Modeling Narrative Structures in Logical Overlays on Top of Knowledge Repositories. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds) Conceptual Modeling. ER 2020. Lecture Notes in Computer Science(), vol 12400. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62521-4

  • Online ISBN: 978-3-030-62522-1

  • eBook Packages: Computer ScienceComputer Science (R0)