Skip to main content

Introduction

  • Chapter
  • First Online:
The Physics of the Dark Photon

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 986 Accesses

Abstract

The dark photon is a new gauge boson whose existence has been conjectured. The names para-  [1], hidden-sector, secluded photon and U-boson  [2] have also being used to indicate the same particle. The dark photon is dark because it arises from a symmetry of a hypothetical dark sector comprising particles completely neutral under the SM interactions. The neutrality of ordinary matter makes it blind to this new gauge boson which is accordingly invisible and therefore characterized as dark.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The literature on the subject is already very extensive, see, for example,  [42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64].

    Interacting dark matter can form bound states. The phenomenology of such atomic dark matter [51] has been discussed in the literature, see [59] and references therein.

  2. 2.

    In addition, the dark Higgs field breaking the U(1) symmetry can provide yet another dark matter candidate  [85].

References

  1. B. Holdom, Two U(1)’s and Epsilon charge shifts. Phys. Lett. 166B, 196–198 (1986). https://doi.org/10.1016/0370-2693(86)91377-8

    Article  ADS  Google Scholar 

  2. P. Fayet, Extra U(1)’s and new forces. Nucl. Phys. B 347, 743–768 (1990). https://doi.org/10.1016/0550-3213(90)90381-M

    Article  ADS  Google Scholar 

  3. P. Fayet, Effects of the Spin 1 partner of the Goldstino (Gravitino) on neutral current phenomenology. Phys. Lett. B 95, 285–289 (1980). https://doi.org/10.1016/0370-2693(80)90488-8

    Article  ADS  Google Scholar 

  4. P. Fayet, On the search for a new Spin 1 Boson. Nucl. Phys. B 187, 184–204 (1981). https://doi.org/10.1016/0550-3213(81)90122-X

    Article  ADS  Google Scholar 

  5. L.B. Okun, Limits of electrodynamics: paraphotons? Sov. Phys. JETP 56, 502 (1982). [Zh. Eksp. Teor. Fiz.83,892(1982)]

    Google Scholar 

  6. H. Georgi, P.H. Ginsparg, S.L. Glashow, Photon oscillations and the cosmic background radiation. Nature 306, 765–766 (1983). https://doi.org/10.1038/306765a0

    Article  ADS  Google Scholar 

  7. J.L. Hewett et al., Fundamental Physics at the Intensity Frontier (2012). arXiv:1205.2671 [hep-ex]. http://lss.fnal.gov/archive/preprint/fermilab-conf-12-879-ppd.shtml. https://doi.org/10.2172/1042577

  8. R. Essig et al., Working group report: new light weakly coupled particles, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, July 29–Au. 6, 2013 (2013). arXiv:1311.0029 [hep-ph]. http://www.slac.stanford.edu/econf/C1307292/docs/IntensityFrontier/NewLight-17.pdf

  9. M. Raggi, V. Kozhuharov, Results and perspectives in dark photon physics. Riv. Nuovo Cim. 38(10), 449–505 (2015). https://doi.org/10.1393/ncr/i2015-10117-9

    Article  ADS  Google Scholar 

  10. M.A. Deliyergiyev, Recent progress in search for dark sector signatures. Open Phys. 14(1), 281–303 (2016). arXiv:1510.06927 [hep-ph]. https://doi.org/10.1515/phys-2016-0034

  11. S. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP physics case. Rept. Prog. Phys. 79(12), 124201 (2016). arXiv:1504.04855 [hep-ph]. https://doi.org/10.1088/0034-4885/79/12/124201

  12. F. Curciarello, Review on dark photon. EPJ Web Conf. 118, 01008 (2016). https://doi.org/10.1051/epjconf/201611801008

    Article  Google Scholar 

  13. J. Alexander et al., Dark Sectors 2016 Workshop: Community Report (2016). arXiv:1608.08632 [hep-ph]. http://lss.fnal.gov/archive/2016/conf/fermilab-conf-16-421.pdf

  14. J. Beacham et al., Physics beyond colliders at CERN: beyond the standard model working group report. J. Phys. G 47(1), 010501 (2020). arXiv:1901.09966 [hep-ex]. https://doi.org/10.1088/1361-6471/ab4cd2

  15. B.A. Dobrescu, Massless gauge bosons other than the photon. Phys. Rev. Lett. 94, 151802 (2005). https://doi.org/10.1103/PhysRevLett.94.151802. arXiv:hep-ph/0411004 [hep-ph]

    Article  ADS  Google Scholar 

  16. F. del Aguila, M. Masip, M. Perez-Victoria, Physical parameters and renormalization of U(1)-a x U(1)-b models. Physis B456, 531–549 (1995). arXiv:hep-ph/9507455 [hep-ph]. https://doi.org/10.1016/0550-3213(95)00511-6

  17. D. Feldman, Z. Liu, P. Nath, The Stueckelberg Z-prime extension with kinetic mixing and milli-charged dark matter from the hidden sector. Phys. Rev. D 75, 115001 (2007). https://doi.org/10.1103/PhysRevD.75.115001. arXiv:hep-ph/0702123 [HEP-PH].

    Article  ADS  Google Scholar 

  18. S. Davidson, S. Hannestad, G. Raffelt, Updated bounds on millicharged particles. JHEP 05, 003 (2000). https://doi.org/10.1088/1126-6708/2000/05/003. arXiv:hep-ph/0001179 [hep-ph]

    Article  ADS  Google Scholar 

  19. H. Ruegg, M. Ruiz-Altaba, The Stueckelberg field. Int. J. Mod. Phys. A19, 3265–3348 (2004). arXiv:hep-th/0304245 [hep-th]. https://doi.org/10.1142/S0217751X04019755

  20. T. Appelquist, B.A. Dobrescu, A.R. Hopper, Nonexotic neutral Gauge Bosons. Phys. Rev. D 68, 035012 (2003). https://doi.org/10.1103/PhysRevD.68.035012. arXiv:hep-ph/0212073 [hep-ph]

    Article  ADS  Google Scholar 

  21. P. Galison, A. Manohar, Two Z’s or not two Z’s? Phys. Lett. 136B, 279–283 (1984). https://doi.org/10.1016/0370-2693(84)91161-4

    Article  ADS  Google Scholar 

  22. X.-G. He, G.C. Joshi, H. Lew, R.R. Volkas, Simplest Z-prime model. Phys. Rev. D 44, 2118–213 (1991). https://doi.org/10.1103/PhysRevD.44.2118

    Article  ADS  Google Scholar 

  23. K.S. Babu, C.F. Kolda, J. March-Russell, Implications of generalized Z-Z-prime mixing. Phys. Rev. D57, 6788–6792 (1998). arXiv:hep-ph/9710441 [hep-ph]. https://doi.org/10.1103/PhysRevD.57.6788

  24. H. Davoudiasl, H.-S. Lee, W.J. Marciano, ’Dark’ Z implications for parity violation, rare meson decays, and higgs physics. Phys. Rev. D 85, 115019 (2012). https://doi.org/10.1103/PhysRevD.85.115019. arXiv:1203.2947 [hep-ph]

    Article  ADS  Google Scholar 

  25. J. Heeck, Unbroken B? L symmetry. Phys. Lett. B739, 256–262 (2014). arXiv:1408.6845 [hep-ph]. https://doi.org/10.1016/j.physletb.2014.10.067

  26. M. Bauer, P. Foldenauer, J. Jaeckel, Hunting all the hidden photons. JHEP 07, 094 (2018). https://doi.org/10.1007/JHEP07(2018)094. arXiv:1803.05466 [hep-ph]. [JHEP18,094(2020)]

    Article  ADS  Google Scholar 

  27. P. Fayet, The light \(U\) boson as the mediator of a new force, coupled to a combination of \(Q,B,L\) and dark matter. Eur. Phys. J. C77(1), 53 (2017). arXiv:1611.05357 [hep-ph]. https://doi.org/10.1140/epjc/s10052-016-4568-9

  28. T.G. Rizzo, Kinetic mixing, dark photons and an extra dimension. Part I. JHEP 07, 118 (2018). arXiv:1801.08525 [hep-ph]. https://doi.org/10.1007/JHEP07(2018)118

  29. E. Bertuzzo, S. Jana, P.A. Machado, R. Zukanovich Funchal, Neutrino masses and mixings dynamically generated by a light dark sector. Phys. Lett. B 791, 210–214 (2019). arXiv:1808.02500 [hep-ph]. https://doi.org/10.1016/j.physletb.2019.02.023

  30. R. Essig, P. Schuster, N. Toro, Probing dark forces and light hidden sectors at low-energy e+e- colliders. Phys. Rev. D 80, 015003 (2009). https://doi.org/10.1103/PhysRevD.80.015003. arXiv:0903.3941 [hep-ph]

    Article  ADS  Google Scholar 

  31. S. Koren, R. McGehee, Freezing-in twin dark matter. Phys. Rev. D 101(5), 055024 (2020). arXiv:1908.03559 [hep-ph]. https://doi.org/10.1103/PhysRevD.101.055024

  32. T. Gherghetta, J. Kersten, K. Olive, M. Pospelov, Evaluating the price of tiny kinetic mixing. Phys. Rev. D 100(9) 095001 (2019). arXiv:1909.00696 [hep-ph]. https://doi.org/10.1103/PhysRevD.100.095001

  33. K.R. Dienes, C.F. Kolda, J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy. Nucl. Phys. B492, 104–118 (1997). arXiv:hep-ph/9610479 [hep-ph]. https://doi.org/10.1016/S0550-3213(97)80028-4, https://doi.org/10.1016/S0550-3213(97)00173-9

  34. S.A. Abel, B.W. Schofield, Brane anti-brane kinetic mixing, millicharged particles and SUSY breaking. Nucl. Phys. B685, 150–170 (2004). arXiv:hep-th/0311051 [hep-th]. https://doi.org/10.1016/j.nuclphysb.2004.02.037

  35. S.A. Abel, J. Jaeckel, V.V. Khoze, A. Ringwald, Illuminating the hidden sector of string theory by shining light through a magnetic field. Phys. Lett. B666, 66–70 (2008). arXiv:hep-ph/0608248 [hep-ph]. https://doi.org/10.1016/j.physletb.2008.03.076

  36. M. Goodsell, Light hidden U(1)s from string theory, in Proceedings, 5th Patras Workshop on Axions, WIMPs and WISPs (AXION-WIMP 2009): Durham, UK, July 13–17, 2009, pp. 165–168 (2009). arXiv:0912.4206 [hep-th]. https://doi.org/10.3204/DESY-PROC-2009-05/goodsell_mark

  37. M. Goodsell, J. Jaeckel, J. Redondo, A. Ringwald, Naturally light hidden photons in large volume string compactifications. JHEP 11, 027 (2009). https://doi.org/10.1088/1126-6708/2009/11/027. arXiv:0909.0515 [hep-ph]

    Article  ADS  Google Scholar 

  38. J.J. Heckman, C. Vafa, An exceptional sector for F-theory GUTs. Phys. Rev. D 83, 026006 (2011). https://doi.org/10.1103/PhysRevD.83.026006. arXiv:1006.5459 [hep-th]

    Article  ADS  Google Scholar 

  39. N. Arkani-Hamed, N. Weiner, LHC signals for a superunified theory of dark matter. JHEP 12, 104 (2008). https://doi.org/10.1088/1126-6708/2008/12/104. arXiv:0810.0714 [hep-ph]

    Article  ADS  Google Scholar 

  40. Y.F. Chan, M. Low, D.E. Morrissey, A.P. Spray, LHC signatures of a minimal supersymmetric hidden valley. JHEP 05, 155 (2012). https://doi.org/10.1007/JHEP05(2012)155. arXiv:1112.2705 [hep-ph]

    Article  ADS  Google Scholar 

  41. B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, Dimension-Six terms in the standard model Lagrangian. JHEP 10, 085 (2010). https://doi.org/10.1007/JHEP10(2010)085. arXiv:1008.4884 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  42. H. Goldberg, and L.J. Hall, A new Candidate for dark matter. Phys. Lett. B174 151 (1986). [,467(1986)]. https://doi.org/10.1016/0370-2693(86)90731-8

  43. B. Holdom, Searching for \(\epsilon \) charges and a new U(1). Phys. Lett. B 178, 65–70 (1986). https://doi.org/10.1016/0370-2693(86)90470-3

    Article  ADS  Google Scholar 

  44. B.-A. Gradwohl, J.A. Frieman, Dark matter, long range forces, and large scale structure. Astrophys. J. 398, 407–424 (1992). https://doi.org/10.1086/171865

    Article  ADS  Google Scholar 

  45. E.D. Carlson, M.E. Machacek, L.J. Hall, Self-interacting dark matter. Astrophys. J. 398, 43–52 (1992). https://doi.org/10.1086/171833

    Article  ADS  Google Scholar 

  46. R. Foot, Mirror matter-type dark matter. Int. J. Mod. Phys. D13, 2161–2192 (2004). arXiv:astro-ph/0407623 [astro-ph]. https://doi.org/10.1142/S0218271804006449

  47. J.L. Feng, H. Tu, H.-B. Yu, Thermal relics in hidden sectors. JCAP 0810, 043 (2008). https://doi.org/10.1088/1475-7516/2008/10/043. arXiv:0808.2318 [hep-ph]

    Article  ADS  Google Scholar 

  48. L. Ackerman, M.R. Buckley, S.M. Carroll, M. Kamionkowski, Dark matter and dark radiation. Phys. Rev. D 79, 023519 (2009). https://doi.org/10.1103/PhysRevD.79.023519,. arXiv:0810.5126 [hep-ph]. [,277(2008)]. https://doi.org/10.1142/9789814293792_0021

  49. J.L. Feng, M. Kaplinghat, H. Tu, H.-B. Yu, Hidden charged dark matter. JCAP 0907, 004 (2009). https://doi.org/10.1088/1475-7516/2009/07/004. arXiv:0905.3039 [hep-ph]

    Article  ADS  Google Scholar 

  50. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer, N. Weiner, A theory of dark matter. Phys. Rev. D79, 015014 (2009). arXiv:0810.0713 [hep-ph]. https://doi.org/10.1103/PhysRevD.79.015014

  51. D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann, C.M. Wells, Atomic dark matter. JCAP 1005, 021 (2010). https://doi.org/10.1088/1475-7516/2010/05/021. arXiv:0909.0753 [hep-ph]

    Article  ADS  Google Scholar 

  52. M.R. Buckley, P.J. Fox, Dark matter self-interactions and light force carriers. Phys. Rev. D 81, 083522 (2010). https://doi.org/10.1103/PhysRevD.81.083522. arXiv:0911.3898 [hep-ph]

    Article  ADS  Google Scholar 

  53. D. Hooper, N. Weiner, W. Xue, Dark forces and light dark matter. Phys. Rev. D 86, 056009 (2012). https://doi.org/10.1103/PhysRevD.86.056009. arXiv:1206.2929 [hep-ph]

    Article  ADS  Google Scholar 

  54. L.G. van den Aarssen, T. Bringmann, C. Pfrommer, Is dark matter with long-range interactions a solution to all small-scale problems of \(\Lambda \) CDM cosmology? Phys. Rev. Lett. 109, 231301 (2012). https://doi.org/10.1103/PhysRevLett.109.231301. arXiv:1205.5809 [astro-ph.CO]

    Article  ADS  Google Scholar 

  55. J.M. Cline, Z. Liu, W. Xue, Millicharged atomic dark matter. Phys. Rev. D 85, 101302 (2012). https://doi.org/10.1103/PhysRevD.85.101302. arXiv:1201.4858 [hep-ph]

    Article  ADS  Google Scholar 

  56. S. Tulin, H.-B. Yu, K.M. Zurek, Beyond Collisionless dark matter: particle physics dynamics for dark matter halo structure. Phys. Rev. D87(11), 115007 (2013). arXiv:1302.3898 [hep-ph]. https://doi.org/10.1103/PhysRevD.87.115007

  57. E. Gabrielli, M. Raidal, Exponentially spread dynamical Yukawa couplings from nonperturbative chiral symmetry breaking in the dark sector. Phys. Rev. D89(1), 015008 (2014).. arXiv:1310.1090 [hep-ph]. https://doi.org/10.1103/PhysRevD.89.015008

  58. M. Baldi, Structure formation in multiple dark matter cosmologies with long-range scalar interactions. Mon. Not. Roy. Astron. Soc. 428, 2074 (2013). https://doi.org/10.1093/mnras/sts169. arXiv:1206.2348 [astro-ph.CO]

    Article  ADS  Google Scholar 

  59. F.-Y. Cyr-Racine, K. Sigurdson, Cosmology of atomic dark matter. Phys. Rev. D87(10), 103515 (2013). arXiv:1209.5752 [astro-ph.CO]. https://doi.org/10.1103/PhysRevD.87.103515

  60. J.M. Cline, Z. Liu, G. Moore, W. Xue, Composite strongly interacting dark matter. Phys. Rev. D90(1), 015023 (2014). arXiv:1312.3325 [hep-ph]. https://doi.org/10.1103/PhysRevD.90.015023

  61. X. Chu, B. Dasgupta, Dark radiation alleviates problems with dark matter Halos. Phys. Rev. Lett. 113(16), 161301 (2014). arXiv:1404.6127 [hep-ph]. https://doi.org/10.1103/PhysRevLett.113.161301

  62. K.K. Boddy, J.L. Feng, M. Kaplinghat, T.M.P. Tait, Self-Interacting dark matter from a non-abelian hidden sector. Phys. Rev. D89(11), 115017 (2014). arXiv:1402.3629 [hep-ph]. https://doi.org/10.1103/PhysRevD.89.115017

  63. M.A. Buen-Abad, G. Marques-Tavares, M. Schmaltz, Non-Abelian dark matter and dark radiation. Phys. Rev. D92(2), 023531 (2015). arXiv:1505.03542 [hep-ph]. https://doi.org/10.1103/PhysRevD.92.023531

  64. P. Agrawal, F.-Y. Cyr-Racine, L. Randall, J. Scholtz, Make dark matter charged again. JCAP 1705(05), 022 (2017). arXiv:1610.04611 [hep-ph]. https://doi.org/10.1088/1475-7516/2017/05/022

  65. D. Clowe, M. Bradac, A.H. Gonzalez, M. Markevitch, S.W. Randall, C. Jones, D. Zaritsky, A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109–L113 (2006). arXiv:astro-ph/0608407 [astro-ph]. https://doi.org/10.1086/508162

  66. J.L. Feng, M. Kaplinghat, H.-B. Yu, Halo shape and relic density exclusions of sommerfeld-enhanced dark matter explanations of Cosmic Ray excesses. Phys. Rev. Lett. 104, 151301 (2010). https://doi.org/10.1103/PhysRevLett.104.151301. arXiv:0911.0422 [hep-ph]

    Article  ADS  Google Scholar 

  67. T. Lin, H.-B. Yu, K.M. Zurek, On symmetric and asymmetric light dark matter. Phys. Rev. D 85, 063503 (2012). https://doi.org/10.1103/PhysRevD.85.063503. arXiv:1111.0293 [hep-ph]

    Article  ADS  Google Scholar 

  68. A.H.G. Peter, M. Rocha, J.S. Bullock, M. Kaplinghat, Cosmological simulations with self-interacting dark matter II: halo shapes versus observations. Mon. Not. Roy. Astron. Soc. 430, 105 (2013). arXiv:1208.3026 [astro-ph.CO]. https://doi.org/10.1093/mnras/sts535

  69. M. Pospelov, T. ter Veldhuis, Direct and indirect limits on the electromagnetic form-factors of WIMPs. Phys. Lett. B 480, 181–186 (2000). arXiv:hep-ph/0003010. https://doi.org/10.1016/S0370-2693(00)00358-0

  70. K. Sigurdson, M. Doran, A. Kurylov, R.R. Caldwell, M. Kamionkowski, Dark-matter electric and magnetic dipole moments. Phys. Rev. D70, 083501 (2004). arXiv:astro-ph/0406355 [astro-ph]. [Erratum: Phys. Rev.D73,089903(2006)]. https://doi.org/10.1103/PhysRevD.70.083501

  71. T. Banks, J.-F. Fortin, S. Thomas, Direct Detection of Dark Matter Electromagnetic Dipole Moments. arXiv:1007.5515 [hep-ph]

  72. V. Barger, W.-Y. Keung, D. Marfatia, Electromagnetic properties of dark matter: Dipole moments and charge form factor. Phys. Lett. B 696, 74–78 (2011). arXiv:1007.4345 [hep-ph]. https://doi.org/10.1016/j.physletb.2010.12.008

  73. N. Fornengo, P. Panci, M. Regis, Long-Range forces in direct dark matter searches. Phys. Rev. D 84, 115002 (2011). https://doi.org/10.1103/PhysRevD.84.115002. arXiv:1108.4661 [hep-ph]

    Article  ADS  Google Scholar 

  74. E. Del Nobile, C. Kouvaris, P. Panci, F. Sannino, J. Virkajarvi, Light magnetic dark matter in direct detection searches. JCAP 08, 010 (2012). https://doi.org/10.1088/1475-7516/2012/08/010. arXiv:1203.6652 [hep-ph]

    Article  Google Scholar 

  75. X. Chu, J.-L. Kuo, J. Pradler, Dark sector-photon interactions in proton-beam experiments. Phys. Rev. D 101, 075035 (2020). https://doi.org/10.1103/PhysRevD.101.075035. arXiv:2001.06042 [hep-ph]

    Article  ADS  Google Scholar 

  76. A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, Y. Xu, The effective field theory of dark matter direct detection. JCAP 1302, 004 (2013). https://doi.org/10.1088/1475-7516/2013/02/004. arXiv:1203.3542 [hep-ph]

    Article  ADS  Google Scholar 

  77. S. Liem, G. Bertone, F. Calore, R. Ruiz de Austri, T.M.P. Tait, R. Trotta, C. Weniger, Effective field theory of dark matter: a global analysis. JHEP 09, 077 (2016). https://doi.org/10.1007/JHEP09(2016)077. arXiv:1603.05994 [hep-ph]

    Article  ADS  Google Scholar 

  78. J. Brod, A. Gootjes-Dreesbach, M. Tammaro, J. Zupan, Effective field theory for dark matter direct detection up to Dimension Seven. JHEP 10, 065 (2018). https://doi.org/10.1007/JHEP10(2018)065. arXiv:1710.10218 [hep-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. C. Boehm, T. Ensslin, J. Silk, Can Annihilating dark matter be lighter than a few GeVs J. Phys. G 30, 279–286 (2004). arXiv:astro-ph/0208458. https://doi.org/10.1088/0954-3899/30/3/004

  80. S. Knapen, T. Lin, K.M. Zurek, Light dark matter: models and constraints. Phys. Rev. D96(11), 115021 (2017). arXiv:1709.07882 [hep-ph]. https://doi.org/10.1103/PhysRevD.96.115021

  81. R. Essig, J. Mardon, T. Volansky, Direct detection of Sub-GeV dark matter. Phys. Rev. D 85, 076007 (2012). https://doi.org/10.1103/PhysRevD.85.076007. arXiv:1108.5383 [hep-ph]

    Article  ADS  Google Scholar 

  82. C. Boehm, P. Fayet, Scalar dark matter candidates. Nucl. Phys. B 683, 219–263 (2004). arXiv:hep-ph/0305261. https://doi.org/10.1016/j.nuclphysb.2004.01.015

  83. T. Hambye, M.H. Tytgat, J. Vandecasteele, L. Vanderheyden, Dark matter from dark photons: a taxonomy of dark matter production. Phys. Rev. D 100(9), 095018 (2019). arXiv:1908.09864 [hep-ph]. https://doi.org/10.1103/PhysRevD.100.095018

  84. E. Izaguirre, G. Krnjaic, P. Schuster, N. Toro, Analyzing the discovery potential for light dark matter. Phys. Rev. Lett. 115(25), 251301 (2015). arXiv:1505.00011 [hep-ph]. https://doi.org/10.1103/PhysRevLett.115.251301

  85. C. Mondino, M. Pospelov, J.T. Ruderman, O. Slone, Dark Higgs Dark Matter. arXiv:2005.02397 [hep-ph]

  86. J. Preskill, M.B. Wise, F. Wilczek, Cosmology of the invisible axion. Phys. Lett. 120B, 127–132 (1983). https://doi.org/10.1016/0370-2693(83)90637-8

  87. L.F. Abbott, P. Sikivie, A cosmological bound on the invisible axion. Phys. Lett. 120B, 133–136 (1983). https://doi.org/10.1016/0370-2693(83)90638-X

    Article  ADS  Google Scholar 

  88. M. Dine, W. Fischler, The not so harmless axion. Phys. Lett. 120B, 137–141 (1983). https://doi.org/10.1016/0370-2693(83)90639-1

    Article  ADS  Google Scholar 

  89. A.E. Nelson, J. Scholtz, Dark light, dark matter and the misalignment mechanism. Phys. Rev. D 84, 103501 (2011). https://doi.org/10.1103/PhysRevD.84.103501. arXiv:1105.2812 [hep-ph]

    Article  ADS  Google Scholar 

  90. P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo, A. Ringwald, WISPy cold dark matter. JCAP 1206, 013 (2012). https://doi.org/10.1088/1475-7516/2012/06/013. arXiv:1201.5902 [hep-ph]

    Article  ADS  Google Scholar 

  91. P.W. Graham, J. Mardon, S. Rajendran, Vector dark matter from inflationary fluctuations. Phys. Rev. D 93(10), 103520 (2016). arXiv:1504.02102 [hep-ph]. https://doi.org/10.1103/PhysRevD.93.103520

  92. Y. Nakai, R. Namba, Z. Wang, Light Dark Photon Dark Matter from Inflation. arXiv:2004.10743 [hep-ph]

  93. M. Pospelov, A. Ritz, M.B. Voloshin, Bosonic super-WIMPs as keV-scale dark matter. Phys. Rev. D 78, 115012 (2008). https://doi.org/10.1103/PhysRevD.78.115012. arXiv:0807.3279 [hep-ph]

    Article  ADS  Google Scholar 

  94. I.M. Bloch, R. Essig, K. Tobioka, T. Volansky, T.-T. Yu, Searching for dark absorption with direct detection experiments. JHEP 06, 087 (2017). https://doi.org/10.1007/JHEP06(2017)087. arXiv:1608.02123 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Fabbrichesi .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fabbrichesi, M., Gabrielli, E., Lanfranchi, G. (2021). Introduction. In: The Physics of the Dark Photon. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-62519-1_1

Download citation

Publish with us

Policies and ethics