Skip to main content

Note on Hedetniemi’s Conjecture and the Poljak-Rödl Function

  • Chapter
  • First Online:
2019-20 MATRIX Annals

Part of the book series: MATRIX Book Series ((MXBS,volume 4))

Abstract

Hedetniemi conjectured in 1966 that Hedetniemi conjectured in 1966 that \(\chi(G \times H) = \min\{\chi(G), \chi(H)\}\) for any graphs G and H. Here \(G\times H\) is the graph with vertex set \(V(G)\times V(H)\) defined by putting \((x,y)\) and \((x^{\prime}, y^{\prime})\) adjacent if and only if \(xx^{\prime}\in E(G)\) and \(yy^{\prime}\in V(H)\). This conjecture received a lot of attention in the past half century. It was disproved recently by Shitov. The Poljak-Rodl function is defined as \(f(n) = \min\{\chi(G \times H): \chi(G)=\chi(H)=n\}\). Hedetniemi's conjecture is equivalent to saying \(f(n)=n\) for every integer \(n\). Shitov’s result shows that \(f(n)<n\) when \(n\) is sufficiently large. Using Shitov’s result, Tardif and Zhu showed that \(f(n) \le n - (\log n)^{1/4-o(1)}\) for sufficiently large \(n\). Using Shitov’s method, He and Wigderson showed that for \(\epsilon \approx 10^{-9}\) and \(n\) sufficiently large, \(f(n) \le (1-\epsilon)n\). In this note we observe that a slight modification of the proof in the paper of Zhu and Tardif shows that \(f(n) \le (\frac 12 + o(1))n\) for sufficiently large \(n\). On the other hand, it is unknown whether \(f(n)\) is bounded by a constant. However, we do know that if \(f(n)\) is bounded by a constant, then the smallest such constant is at most 9. This note gives self-contained proofs of the above mentioned results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. El-Zahar, N.W. Sauer, The chromatic number of the product of two 4-chromatic graphs is 4, Combinatorica 5 (1985) 121-126.

    Article  MathSciNet  Google Scholar 

  2. P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959), 34-38.

    Article  MathSciNet  Google Scholar 

  3. R. Häggkvist, P. Hell, J. Miller and V. Neumann Lara, On multiplicative graphs and the product conejcture, Combiantorica 8(1988), 71–81.

    Google Scholar 

  4. X. He and Y. Wigderson, Hedetniemi's conjecture is asympototically false, J. Combin. Theory, Seri. B, 2020. https://doi.org/10.1016/j.jctb.2020.03.003, arXiv:1906.06/83v2.

  5. S. Hedetniemi, Homomorphisms of graphs and automata, Technical Report 03105–44-T, University of Michigan, 1966.

    Google Scholar 

  6. S. Klavžar, Coloring graph products—a survey, Discrete Math. 155 (1996) 135--145.

    Article  MathSciNet  Google Scholar 

  7. L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978), 319-324.

    Article  MathSciNet  Google Scholar 

  8. S. Poljak, Coloring digraphs by iterated antichains, Comment. Math. Univ. Carolin. 32(1991), 209-212.

    MathSciNet  MATH  Google Scholar 

  9. S. Poljak and V. Rödl, On the arc-chromatic number of a digraph, J. Combin. Theory Ser. B 31(1981), 339-350.

    Article  MathSciNet  Google Scholar 

  10. N. Sauer, Hedetniemi's conjecture—a survey, Discrete Math. 229 (2001) 261-292.

    Article  MathSciNet  Google Scholar 

  11. Y. Shitov, Counterexamples to Hedetniemi's Conjecture, Ann. of Math. (2) 190(2019), no. 2, 663–667.

    Google Scholar 

  12. S. Stahl, n-tuple colorings and associated graphs, J. Combinatorial Theory Ser. B 20 (1976), no. 2, 185-203.

    Article  MathSciNet  Google Scholar 

  13. C. Tardif, Hedetniemi's conjecture, 40 years later, Graph Theory Notes N. Y. 54 (2008) 46--57.

    MathSciNet  Google Scholar 

  14. C. Tardif, Multiplicative graphs and semi-lattice endomorphisms in the category of graphs, Journal of Combinatorial Theory Ser. B 95 (2005), 338-345.

    Article  MathSciNet  Google Scholar 

  15. C. Tardif and D. Wehlau, Chromatic numbers of products of graphs: the directed and undirected versions of the Poljak-Rödl function, J. Graph Theory 51(2006), 33-36.

    Article  MathSciNet  Google Scholar 

  16. C. Tardif and X. Zhu, A note on Hedetniemi’s conjecture, Stahl’s conjecture and the Poljak-Rödl function, Electronic J. Combin. 26(4)(2019), \#P4.321

    Google Scholar 

  17. D. B. West. Introduction to graph theory. Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

    MATH  Google Scholar 

  18. X. Zhu, A survey on Hedetniemi's conjecture, Taiwanese J. Math. 2 (1998) 1--24.

    Article  MathSciNet  Google Scholar 

  19. X. Zhu, The fractional version of Hedetniemi's conjecture is true, European J. Combin. 32 (2011), 1168--1175.

    Article  MathSciNet  Google Scholar 

  20. X. Zhu, A note on Poljak-Rödl function, Electronic J. Combin. 27(3)(2020), \#P3.2. https://doi.org/https://doi.org/10.37236/9371.

  21. X. Zhu, Relatively small counterexamples to Hedetniemi's conjecture, manuscript, 2020, arXiv:2004.09028.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuding Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, X. (2021). Note on Hedetniemi’s Conjecture and the Poljak-Rödl Function. In: de Gier, J., Praeger, C.E., Tao, T. (eds) 2019-20 MATRIX Annals. MATRIX Book Series, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-62497-2_31

Download citation

Publish with us

Policies and ethics