Skip to main content

Lung Cancer Tumor Region Segmentation Using Recurrent 3D-DenseUNet

  • Conference paper
  • First Online:
Thoracic Image Analysis (TIA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12502))

Included in the following conference series:

Abstract

The performance of a computer-aided automated diagnosis system of lung cancer from Computed Tomography (CT) volumetric images greatly depends on the accurate detection and segmentation of tumor regions. In this paper, we present Recurrent 3D-DenseUNet, a novel deep learning based architecture for volumetric lung tumor segmentation from CT scans. The proposed architecture consists of a 3D encoder block that learns to extract fine-grained spatial and coarse-grained temporal features, a recurrent block of multiple Convolutional Long Short-Term Memory (ConvLSTM) layers to extract fine-grained spatio-temporal information, and finally a 3D decoder block to reconstruct the desired volume segmentation masks from the latent feature space. The encoder and decoder blocks consist of several 3D-convolutional layers that are densely connected among themselves so that necessary feature aggregation can occur throughout the network. During prediction, we apply selective thresholding followed by morphological operation, on top of the network prediction, to better differentiate between tumorous and non-tumorous image-slices, which shows more promise than only thresholding-based approaches. We train and test our network on the NSCLC-Radiomics dataset of 300 patients, provided by The Cancer Imaging Archive (TCIA) for the 2018 IEEE VIP Cup. Moreover, we perform an extensive ablation study of different loss functions in practice for this task. The proposed network outperforms other state-of-the-art 3D segmentation architectures with an average dice score of 0.7228.

Source code available at https://github.com/muntakimrafi/TIA2020-Recurrent-3D-DenseUNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aerts, H.J., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5(1), 1–9 (2014)

    MathSciNet  Google Scholar 

  2. Anthimopoulos, M., Christodoulidis, S., Ebner, L., Geiser, T., Christe, A., Mougiakakou, S.: Semantic segmentation of pathological lung tissue with dilated fully convolutional networks. IEEE J. Biomed. Health Inform. 23(2), 714–722 (2018)

    Article  Google Scholar 

  3. Chen, H., Dou, Q., Yu, L., Heng, P.A.: VoxResNet: deep voxelwise residual networks for volumetric brain segmentation. arXiv preprint arXiv:1608.05895 (2016)

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  5. del Ciello, A., Franchi, P., Contegiacomo, A., Cicchetti, G., Bonomo, L., Larici, A.R.: Missed lung cancer: when, where, and why? Diagn. Interv. Radiol. 23(2), 118 (2017)

    Article  Google Scholar 

  6. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  8. Hashemi, S.R., Salehi, S.S.M., Erdogmus, D., Prabhu, S.P., Warfield, S.K., Gholipour, A.: Tversky as a loss function for highly unbalanced image segmentation using 3D fully convolutional deep networks. arXiv preprint arXiv:1803.11078 (2018)

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Hossain, S., Najeeb, S., Shahriyar, A., Abdullah, Z.R., Haque, M.A.: A pipeline for lung tumor detection and segmentation from CT scans using dilated convolutional neural networks. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1348–1352. IEEE (2019)

    Google Scholar 

  11. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, vol. 1, p. 3 (2017)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Lambin, P., et al.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012)

    Article  Google Scholar 

  14. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-DenseUNet: hybrid densely connected UNet for liver and liver tumor segmentation from CT volumes. arXiv preprint arXiv:1709.07330 (2017)

  15. Liao, S., Gao, Y., Oto, A., Shen, D.: Representation learning: a unified deep learning framework for automatic prostate MR segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 254–261. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_32

    Chapter  Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  17. Mason, D.: Su-e-t-33: pydicom: an open source DICOM library. Med. Phys. 38(6Part10), 3493–3493 (2011)

    Article  Google Scholar 

  18. Midthun, D.E.: Early detection of lung cancer. F1000Research 5 (2016)

    Google Scholar 

  19. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  20. Mohammadi, A., et al.: Lung cancer radiomics: highlights from the IEEE video and image processing cup 2018 student competition [sp competitions]. IEEE Signal Process. Mag. 36(1), 164–173 (2018)

    Article  Google Scholar 

  21. Pang, S., Du, A., He, X., Díez, J., Orgun, M.A.: Fast and accurate lung tumor spotting and segmentation for boundary delineation on CT slices in a coarse-to-fine framework. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. CCIS, vol. 1142, pp. 589–597. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36808-1_64

    Chapter  Google Scholar 

  22. Pang, S., et al.: CTumorGAN: a unified framework for automatic computed tomography tumor segmentation. Eur. J. Nucl. Med. Mol. Imaging 47, 1–21 (2020)

    Article  Google Scholar 

  23. Pataer, A., et al.: Histopathologic response criteria predict survival of patients with resected lung cancer after neoadjuvant chemotherapy. J. Thorac. Oncol. 7(5), 825–832 (2012)

    Article  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019)

    Article  Google Scholar 

  26. Uzelaltinbulat, S., Ugur, B.: Lung tumor segmentation algorithm. Procedia Comput. Sci. 120, 140–147 (2017)

    Article  Google Scholar 

  27. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Kamrul Hasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamal, U., Rafi, A.M., Hoque, R., Wu, J., Hasan, M.K. (2020). Lung Cancer Tumor Region Segmentation Using Recurrent 3D-DenseUNet. In: Petersen, J., et al. Thoracic Image Analysis. TIA 2020. Lecture Notes in Computer Science(), vol 12502. Springer, Cham. https://doi.org/10.1007/978-3-030-62469-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62469-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62468-2

  • Online ISBN: 978-3-030-62469-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics