Watson, J., Brooks, R., Colby, A., Kumar, P., Malhotra, A., Jain, M.: Predicting service impairments from set-top box errors in near real-time and what to do about It. In: the 2018 Fall Technical Forum (2018)
Google Scholar
Ran, Y., Zhou, X., Lin, P., Wen, Y., Deng, R.: A survey of predictive maintenance: systems, purposes and approaches. arXiv:1912.07383 (2019)
Konys, A.: An ontology-based knowledge modelling for a sustainability assessment domain. Sustainability 10(2), 300 (2018)
CrossRef
Google Scholar
Peng, Y., Dong, M., Zuo, M.J.: Current status of machine prognostics in condition-based maintenance: a review. Int. J. Adv. Manuf. Technol. 50(1), 297–313 (2010)
CrossRef
Google Scholar
Zhang, Z., Si, X., Hu, C., Lei, Y.: Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods. Eur. J. Oper. Res. 271(3), 775–796 (2018)
MathSciNet
CrossRef
Google Scholar
Olde Keizer, M.C.A., Flapper, S.D.P., Teunter, R.H.: Condition-based maintenance policies for systems with multiple dependent components: a review. Eur. J. Oper. Res. 261(2), 405–420 (2017)
MathSciNet
CrossRef
Google Scholar
Hong, H.P., Zhou, W., Zhang, S., Ye, W.: Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components. Reliab. Eng. Syst. Saf. 121, 276–288 (2014)
CrossRef
Google Scholar
Rao, B.K.N., Pai, P.S., Nagabhushana, T.N.: Failure diagnosis and prognosis of rolling - element bearings using artificial neural networks: a critical overview. J. Phys: Conf. Ser. 364, 012023 (2012)
Google Scholar
Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inform. 11(3), 812–820 (2015)
CrossRef
Google Scholar
Chen, X., Wang, P., Hao, Y., Zhao, M.: Evidential KNN-based condition monitoring and early warning method with applications in power plant. Neurocomputing 315, 18–32 (2018)
CrossRef
Google Scholar
Guo, L., Lei, Y., Li, N., Yan, T., Li, N.: Machinery health indicator construction based on convolutional neural networks considering trend burr. Neurocomputing 292, 142–150 (2018)
CrossRef
Google Scholar
Zhu, J., Chen, N., Peng, W.: Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE Trans. Ind. Electron. 66(4), 3208–3216 (2019)
CrossRef
Google Scholar
Wu, Y., Yuan, M., Dong, S., Lin, L., Liu, Y.: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing 275, 167–179 (2018)
CrossRef
Google Scholar
Deutsch, J., He, D.: Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Trans. Syst. Man Cybern.: Syst. 48(1), 11–20 (2018)
CrossRef
Google Scholar
Ansari, F., Glawar, R., Sihn, W.: Prescriptive maintenance of CPPS by integrating multimodal data with dynamic bayesian networks. Machine Learning for Cyber Physical Systems. TA, vol. 11, pp. 1–8. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-59084-3_1
CrossRef
Google Scholar
Matyas, K., Nemeth, T., Kovacs, K., Glawar, R.: A procedural approach for realizing prescriptive maintenance planning in manufacturing industries. CIRP Ann. – Manuf. Technol. 66, 461–464 (2017)
CrossRef
Google Scholar
Goyal, A., et al.: Asset health management using predictive and prescriptive analytics for the electric power grid. IBM J. Res. Devel. 60(1), 4:1–4:14 (2016)
CrossRef
Google Scholar
Ansari, F., Glawar, R., Nemeh, T.: PriMa: a prescriptive maintenance model for cyber-physical production systems. Int. J. Comput. Integr. Manuf. 32(4:5), 482–503 (2019)
CrossRef
Google Scholar
Schmidt, B., Wang, L., Galar, D.: Semantic framework for predictive maintenance in a cloud environment. In: Proceedings of the 10th CIRP, vol. 62, pp. 583–588 (2017)
Google Scholar
Medina-Oliva, G., Voisin, A., Monnin, M., Leger, J.-B.: Predictive diagnosis based on a fleet-wide ontology approach. Knowl.-Based Syst. 68, 40–57 (2014)
CrossRef
Google Scholar
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52
CrossRef
Google Scholar
Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In: NIPS, pp. 2735–2745 (2019)
Google Scholar
Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)
CrossRef
Google Scholar
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)
Google Scholar
Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: 3rd International Conference on Learning Representations, (ICLR 2015) San Diego (2015)
Google Scholar
Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 1955–1961, Phoenix, Arizona (2016)
Google Scholar
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning, vol. 48, pp. 2071–2080. New York (2016)
Google Scholar
Costabello, L., Pai, S., Van, C. L., McGrath, R., McCarthy, N.: AmpliGraph: a Library for Representation Learning on Knowledge Graphs, Zenodo (2019)
Google Scholar
Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21(3), 768–769 (1965)
Google Scholar
Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)
MathSciNet
CrossRef
Google Scholar