Skip to main content

Reasoning Engine for Support Maintenance

  • 1947 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12507)

Abstract

This paper presents a reasoning system deployed for supporting the maintenance of IT devices in use by a leading broadcasting and cable television company in North America. We describe a reasoning engine pipeline relying on semantic data representation and some machine learning approaches such as clustering. The engine derives problems on a telecommunication network from a textual description and uses structured historical data of problems, error codes and proposed solutions to prescribe potential solutions. The engine is capable of proposing solutions to unseen problems by using analogical reasoning on structured representations. When a problem happens on the network or more precisely on one of the devices, these devices generate error codes. We addressed two scenarios; (i) we assumed that the list of error codes that we captured is complete, (ii) we assumed, more realistically, that this list is incomplete. In the first case, we suggested solutions for seen and new problems and reported results on real data. In the second case, we proposed a method to infer the complete list of errors, tested that method on synthetic data and showed results with high accuracy. Although both scenarios are in-use, the first scenario is more usual than the second one, but both need to be considered.

Keywords

  • Knowledge graphs
  • Graph embedding
  • Reasoning engine

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-62466-8_32
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-62466-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. 1.

    The details and results of the embedding algorithms comparison are at http://www-sop.inria.fr/members/Freddy.Lecue/thales/iswc-2020-in-use-PrescriptiveMaintenance-extra-results.pdf.

  2. 2.

    http://www-sop.inria.fr/members/Freddy.Lecue/thales/iswc-2020-in-use-PrescriptiveMaintenance.mp4.

References

  1. Watson, J., Brooks, R., Colby, A., Kumar, P., Malhotra, A., Jain, M.: Predicting service impairments from set-top box errors in near real-time and what to do about It. In: the 2018 Fall Technical Forum (2018)

    Google Scholar 

  2. Ran, Y., Zhou, X., Lin, P., Wen, Y., Deng, R.: A survey of predictive maintenance: systems, purposes and approaches. arXiv:1912.07383 (2019)

  3. Konys, A.: An ontology-based knowledge modelling for a sustainability assessment domain. Sustainability 10(2), 300 (2018)

    CrossRef  Google Scholar 

  4. Peng, Y., Dong, M., Zuo, M.J.: Current status of machine prognostics in condition-based maintenance: a review. Int. J. Adv. Manuf. Technol. 50(1), 297–313 (2010)

    CrossRef  Google Scholar 

  5. Zhang, Z., Si, X., Hu, C., Lei, Y.: Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods. Eur. J. Oper. Res. 271(3), 775–796 (2018)

    MathSciNet  CrossRef  Google Scholar 

  6. Olde Keizer, M.C.A., Flapper, S.D.P., Teunter, R.H.: Condition-based maintenance policies for systems with multiple dependent components: a review. Eur. J. Oper. Res. 261(2), 405–420 (2017)

    MathSciNet  CrossRef  Google Scholar 

  7. Hong, H.P., Zhou, W., Zhang, S., Ye, W.: Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components. Reliab. Eng. Syst. Saf. 121, 276–288 (2014)

    CrossRef  Google Scholar 

  8. Rao, B.K.N., Pai, P.S., Nagabhushana, T.N.: Failure diagnosis and prognosis of rolling - element bearings using artificial neural networks: a critical overview. J. Phys: Conf. Ser. 364, 012023 (2012)

    Google Scholar 

  9. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inform. 11(3), 812–820 (2015)

    CrossRef  Google Scholar 

  10. Chen, X., Wang, P., Hao, Y., Zhao, M.: Evidential KNN-based condition monitoring and early warning method with applications in power plant. Neurocomputing 315, 18–32 (2018)

    CrossRef  Google Scholar 

  11. Guo, L., Lei, Y., Li, N., Yan, T., Li, N.: Machinery health indicator construction based on convolutional neural networks considering trend burr. Neurocomputing 292, 142–150 (2018)

    CrossRef  Google Scholar 

  12. Zhu, J., Chen, N., Peng, W.: Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE Trans. Ind. Electron. 66(4), 3208–3216 (2019)

    CrossRef  Google Scholar 

  13. Wu, Y., Yuan, M., Dong, S., Lin, L., Liu, Y.: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing 275, 167–179 (2018)

    CrossRef  Google Scholar 

  14. Deutsch, J., He, D.: Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Trans. Syst. Man Cybern.: Syst. 48(1), 11–20 (2018)

    CrossRef  Google Scholar 

  15. Ansari, F., Glawar, R., Sihn, W.: Prescriptive maintenance of CPPS by integrating multimodal data with dynamic bayesian networks. Machine Learning for Cyber Physical Systems. TA, vol. 11, pp. 1–8. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-59084-3_1

    CrossRef  Google Scholar 

  16. Matyas, K., Nemeth, T., Kovacs, K., Glawar, R.: A procedural approach for realizing prescriptive maintenance planning in manufacturing industries. CIRP Ann. – Manuf. Technol. 66, 461–464 (2017)

    CrossRef  Google Scholar 

  17. Goyal, A., et al.: Asset health management using predictive and prescriptive analytics for the electric power grid. IBM J. Res. Devel. 60(1), 4:1–4:14 (2016)

    CrossRef  Google Scholar 

  18. Ansari, F., Glawar, R., Nemeh, T.: PriMa: a prescriptive maintenance model for cyber-physical production systems. Int. J. Comput. Integr. Manuf. 32(4:5), 482–503 (2019)

    CrossRef  Google Scholar 

  19. Schmidt, B., Wang, L., Galar, D.: Semantic framework for predictive maintenance in a cloud environment. In: Proceedings of the 10th CIRP, vol. 62, pp. 583–588 (2017)

    Google Scholar 

  20. Medina-Oliva, G., Voisin, A., Monnin, M., Leger, J.-B.: Predictive diagnosis based on a fleet-wide ontology approach. Knowl.-Based Syst. 68, 40–57 (2014)

    CrossRef  Google Scholar 

  21. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    CrossRef  Google Scholar 

  22. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In: NIPS, pp. 2735–2745 (2019)

    Google Scholar 

  23. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    CrossRef  Google Scholar 

  24. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  25. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: 3rd International Conference on Learning Representations, (ICLR 2015) San Diego (2015)

    Google Scholar 

  26. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 1955–1961, Phoenix, Arizona (2016)

    Google Scholar 

  27. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning, vol. 48, pp. 2071–2080. New York (2016)

    Google Scholar 

  28. Costabello, L., Pai, S., Van, C. L., McGrath, R., McCarthy, N.: AmpliGraph: a Library for Representation Learning on Knowledge Graphs, Zenodo (2019)

    Google Scholar 

  29. Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21(3), 768–769 (1965)

    Google Scholar 

  30. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    MathSciNet  CrossRef  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Roger Brooks for his support along the duration of the project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rana Farah or Freddy Lécué .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Farah, R. et al. (2020). Reasoning Engine for Support Maintenance. In: , et al. The Semantic Web – ISWC 2020. ISWC 2020. Lecture Notes in Computer Science(), vol 12507. Springer, Cham. https://doi.org/10.1007/978-3-030-62466-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62466-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62465-1

  • Online ISBN: 978-3-030-62466-8

  • eBook Packages: Computer ScienceComputer Science (R0)